Recursive convolutional neural networks for epigenomics

Aikaterini Symeonidi, Anguelos Nicolaou, Frank Johannes, Vincent Christlein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Deep learning methods have proved to be powerful classification tools in the fields of structural and functional genomics. In this paper, we introduce Recursive Convolutional Neural Networks (RCNN) for the analysis of epigenomic data. We focus on the task of predicting gene expression from the intensity of histone modifications. The proposed RCNN architecture can be applied to data of an arbitrary size, and has a single meta-parameter that quantifies the models capacity, thus making it flexible for experimenting. The proposed architecture outperforms state-of-the-art systems, while having several orders of magnitude fewer parameters.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2567-2574
Number of pages8
ISBN (Electronic)9781728188089
DOIs
StatePublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: 10 Jan 202115 Jan 2021

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
Country/TerritoryItaly
CityVirtual, Milan
Period10/01/2115/01/21

Fingerprint

Dive into the research topics of 'Recursive convolutional neural networks for epigenomics'. Together they form a unique fingerprint.

Cite this