Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW Radar

Sabri Mustafa Kahya, Muhammet Sami Yavuz, Eckehard Steinbach

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Out-of-distribution (OOD) detection recently has drawn attention due to its critical role in the safe deployment of modern neural network architectures in real-world applications. The OOD detectors aim to distinguish samples that lie outside the training distribution in order to avoid the overconfident predictions of machine learning models on OOD data. Existing detectors, which mainly rely on the logit, intermediate feature space, softmax score, or reconstruction loss, manage to produce promising results. However, most of these methods are developed for the image domain. In this study, we propose a novel reconstruction-based OOD detector to operate on the radar domain. Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples. We propose two scores incorporating the patch-based reconstruction loss and the energy value calculated from the latent representations of each patch. We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar. The experiments demonstrate that, in terms of AUROC and AUPR, our method outperforms the baseline (AE) and the other state-of-the-art methods. Also, thanks to its model size of 641 kB, our detector is suitable for embedded usage.

Original languageEnglish
Title of host publication31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
PublisherEuropean Signal Processing Conference, EUSIPCO
Pages1350-1354
Number of pages5
ISBN (Electronic)9789464593600
DOIs
StatePublished - 2023
Event31st European Signal Processing Conference, EUSIPCO 2023 - Helsinki, Finland
Duration: 4 Sep 20238 Sep 2023

Publication series

NameEuropean Signal Processing Conference
ISSN (Print)2219-5491

Conference

Conference31st European Signal Processing Conference, EUSIPCO 2023
Country/TerritoryFinland
CityHelsinki
Period4/09/238/09/23

Keywords

  • 60 GHz FMCW radar
  • Out-of-distribution detection
  • autoencoders
  • deep neural networks
  • energy scores
  • reconstruction

Fingerprint

Dive into the research topics of 'Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW Radar'. Together they form a unique fingerprint.

Cite this