TY - GEN
T1 - Real-time motion compensation for EM bronchoscope tracking with smooth output - Ex-vivo validation
AU - Reichl, Tobias
AU - Gergel, Ingmar
AU - Menzel, Manuela
AU - Hautmann, Hubert
AU - Wegner, Ingmar
AU - Meinzer, Hans Peter
AU - Navab, Nassir
PY - 2012
Y1 - 2012
N2 - Navigated bronchoscopy provides benefits for endoscopists and patients, but accurate tracking information is needed. We present a novel real-time approach for bronchoscope tracking combining electromagnetic (EM) tracking, airway segmentation, and a continuous model of output. We augment a previously published approach by including segmentation information in the tracking optimization instead of image similarity. Thus, the new approach is feasible in real-time. Since the true bronchoscope trajectory is continuous, the output is modeled using splines and the control points are optimized with respect to displacement from EM tracking measurements and spatial relation to segmented airways. Accuracy of the proposed method and its components is evaluated on a ventilated porcine ex-vivo lung with respect to ground truth data acquired from a human expert. We demonstrate the robustness of the output of the proposed method against added artificial noise in the input data. Smoothness in terms of inter-frame distance is shown to remain below 2 mm, even when up to 5 mm of Gaussian noise are added to the input. The approach is shown to be easily extensible to include other measures like image similarity.
AB - Navigated bronchoscopy provides benefits for endoscopists and patients, but accurate tracking information is needed. We present a novel real-time approach for bronchoscope tracking combining electromagnetic (EM) tracking, airway segmentation, and a continuous model of output. We augment a previously published approach by including segmentation information in the tracking optimization instead of image similarity. Thus, the new approach is feasible in real-time. Since the true bronchoscope trajectory is continuous, the output is modeled using splines and the control points are optimized with respect to displacement from EM tracking measurements and spatial relation to segmented airways. Accuracy of the proposed method and its components is evaluated on a ventilated porcine ex-vivo lung with respect to ground truth data acquired from a human expert. We demonstrate the robustness of the output of the proposed method against added artificial noise in the input data. Smoothness in terms of inter-frame distance is shown to remain below 2 mm, even when up to 5 mm of Gaussian noise are added to the input. The approach is shown to be easily extensible to include other measures like image similarity.
KW - Endoscopic Procedures
KW - Intraoperative Imaging
KW - Localization and Tracking Technologies
UR - http://www.scopus.com/inward/record.url?scp=84860226961&partnerID=8YFLogxK
U2 - 10.1117/12.911192
DO - 10.1117/12.911192
M3 - Conference contribution
AN - SCOPUS:84860226961
SN - 9780819489654
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2012
T2 - Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
Y2 - 5 February 2012 through 7 February 2012
ER -