TY - JOUR
T1 - Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site
AU - Bonello, Steve
AU - Zähringer, Christian
AU - BelAiba, Rachida S.
AU - Djordjevic, Talija
AU - Hess, John
AU - Michiels, Carine
AU - Kietzmann, Thomas
AU - Görlach, Agnes
PY - 2007/4
Y1 - 2007/4
N2 - OBJECTIVE - Reactive oxygen species have been implicated as signaling molecules modulating the activity of redox-sensitive transcription factors such as nuclear factor kappa B (NF-κB). Recently, the transcription factor hypoxia-inducible factor-1 (HIF-1), known to mediate gene expression by hypoxia, has been found to be also activated by nonhypoxic factors in a redox-sensitive manner. We therefore aimed to elucidate the link between these 2 important redox-sensitive transcription factors. METHODS AND RESULTS - In pulmonary artery smooth muscle cells, reactive oxygen species generated either by exogenous H2O2 or by a NOX4-containing NADPH oxidase stimulated by thrombin activated or induced NF-κB and HIF-1α. The reactive oxygen species-mediated HIF-1α induction occurred on the transcriptional level and was dependent on NF-κB. Transfection experiments with wild-type or mutant HIF-1α promoter constructs revealed the presence of a yet unidentified NF-κB binding element. Gel shift analyses and chromatin immunoprecipitation verified binding of NF-κB to this site. Furthermore, reactive oxygen species enhanced expression of plasminogen activator inhibitor-1, which was prevented by dominant-negative IκB or mutation of the HIF-1 binding site within the plasminogen activator inhibitor-1 promoter. CONCLUSION - These findings show for the first time to our knowledge that reactive oxygen species directly link HIF-1α and NF-κB, implicating an important pathophysiological role of this novel pathway in disorders associated with elevated levels of reactive oxygen species.
AB - OBJECTIVE - Reactive oxygen species have been implicated as signaling molecules modulating the activity of redox-sensitive transcription factors such as nuclear factor kappa B (NF-κB). Recently, the transcription factor hypoxia-inducible factor-1 (HIF-1), known to mediate gene expression by hypoxia, has been found to be also activated by nonhypoxic factors in a redox-sensitive manner. We therefore aimed to elucidate the link between these 2 important redox-sensitive transcription factors. METHODS AND RESULTS - In pulmonary artery smooth muscle cells, reactive oxygen species generated either by exogenous H2O2 or by a NOX4-containing NADPH oxidase stimulated by thrombin activated or induced NF-κB and HIF-1α. The reactive oxygen species-mediated HIF-1α induction occurred on the transcriptional level and was dependent on NF-κB. Transfection experiments with wild-type or mutant HIF-1α promoter constructs revealed the presence of a yet unidentified NF-κB binding element. Gel shift analyses and chromatin immunoprecipitation verified binding of NF-κB to this site. Furthermore, reactive oxygen species enhanced expression of plasminogen activator inhibitor-1, which was prevented by dominant-negative IκB or mutation of the HIF-1 binding site within the plasminogen activator inhibitor-1 promoter. CONCLUSION - These findings show for the first time to our knowledge that reactive oxygen species directly link HIF-1α and NF-κB, implicating an important pathophysiological role of this novel pathway in disorders associated with elevated levels of reactive oxygen species.
KW - Hypoxia-inducible factor
KW - NADPH oxidase
KW - Nuclear factor kappa B
KW - Reactive oxygen species
KW - Thrombin
UR - http://www.scopus.com/inward/record.url?scp=34247187576&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000258979.92828.bc
DO - 10.1161/01.ATV.0000258979.92828.bc
M3 - Article
C2 - 17272744
AN - SCOPUS:34247187576
SN - 1079-5642
VL - 27
SP - 755
EP - 761
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 4
ER -