TY - JOUR
T1 - Raman Microspectroscopy to Trace the Incorporation of Deuterium from Labeled (Micro)Plastics into Microbial Cells
AU - Müller, Kara
AU - Elsner, Martin
AU - Leung, Anna E.
AU - Wacklin-Knecht, Hanna
AU - Allgaier, Jürgen
AU - Heiling, Maria
AU - Ivleva, Natalia P.
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025
Y1 - 2025
N2 - The ubiquitous use of plastics demands thoughtfulness about their fate in the environment. Biodegradability is, therefore, a prerequisite for the future use of plastics in many applications, including agriculture. Here, we bring forward stable isotope (resonance) Raman microspectroscopy at the single-cell level to broaden the mechanistic understanding of microbial degradation of (micro)plastics in natural systems. We selected perdeuterated d-polylactic acid (dPLA) as model plastic, synthesized from d-lactic acid-d4, via enantioselective, biocatalytic reduction of pyruvate-d3. With dPLA in hand, we traced the deuterium label during incubation experiments into microbial biomass using C-D vibrations (appear in the Raman-silent region of undeuterated biomass, 2050-2300 cm-1). The 2068 cm-1 C-D band was indicative of strongly deuterated lipids enabling the detection of metabolic differences during incubation with dPLA (i.e., stronger lipid and weaker protein deuteration) compared to glucose-d12 and D2O as alternative D sources. Single-cell analysis was the key to detecting phenotypic heterogeneity and classifying cells of the naturally occurring bacterium Sphingomonas koreensis in two clusters: one showed a significantly stronger deuteration level than the Escherichia coli control, whereas the other was nonlabeled. The deuterium label could even be detected in the strong resonance Raman signal of carotenoids, highlighting the potential for high throughput technologies like imaging and cell sorting. To further demonstrate the transferability to environmental samples, the experiment was repeated with soil bacteria isolates, and deuterium uptake from dPLA into microbial biomass was observed after 2 weeks.
AB - The ubiquitous use of plastics demands thoughtfulness about their fate in the environment. Biodegradability is, therefore, a prerequisite for the future use of plastics in many applications, including agriculture. Here, we bring forward stable isotope (resonance) Raman microspectroscopy at the single-cell level to broaden the mechanistic understanding of microbial degradation of (micro)plastics in natural systems. We selected perdeuterated d-polylactic acid (dPLA) as model plastic, synthesized from d-lactic acid-d4, via enantioselective, biocatalytic reduction of pyruvate-d3. With dPLA in hand, we traced the deuterium label during incubation experiments into microbial biomass using C-D vibrations (appear in the Raman-silent region of undeuterated biomass, 2050-2300 cm-1). The 2068 cm-1 C-D band was indicative of strongly deuterated lipids enabling the detection of metabolic differences during incubation with dPLA (i.e., stronger lipid and weaker protein deuteration) compared to glucose-d12 and D2O as alternative D sources. Single-cell analysis was the key to detecting phenotypic heterogeneity and classifying cells of the naturally occurring bacterium Sphingomonas koreensis in two clusters: one showed a significantly stronger deuteration level than the Escherichia coli control, whereas the other was nonlabeled. The deuterium label could even be detected in the strong resonance Raman signal of carotenoids, highlighting the potential for high throughput technologies like imaging and cell sorting. To further demonstrate the transferability to environmental samples, the experiment was repeated with soil bacteria isolates, and deuterium uptake from dPLA into microbial biomass was observed after 2 weeks.
UR - http://www.scopus.com/inward/record.url?scp=85217552643&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.4c05827
DO - 10.1021/acs.analchem.4c05827
M3 - Article
AN - SCOPUS:85217552643
SN - 0003-2700
JO - Analytical Chemistry
JF - Analytical Chemistry
ER -