Raising the Bar of AI-generated Image Detection with CLIP

Davide Cozzolino, Giovanni Poggi, Riccardo Corvi, Matthias Nießner, Luisa Verdoliva

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images. We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios. We find that, contrary to previous beliefs, it is neither necessary nor convenient to use a large domain-specific dataset for training. On the contrary, by using only a handful of example images from a single generative model, a CLIP-based detector exhibits surprising generalization ability and high robustness across different architectures, including recent commercial tools such as Dalle-3, Midjourney v5, and Firefly. We match the state-of-the-art (SoTA) on in-distribution data and significantly improve upon it in terms of generalization to out-of-distribution data (+6% AUC) and robustness to impaired/laundered data (+13%). Our project is available at https://grip-unina.github.io/ClipBased-SyntheticImageDetection/

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
PublisherIEEE Computer Society
Pages4356-4366
Number of pages11
ISBN (Electronic)9798350365474
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Fingerprint

Dive into the research topics of 'Raising the Bar of AI-generated Image Detection with CLIP'. Together they form a unique fingerprint.

Cite this