Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator

Irene Sánchez Arribas, Takashi Taniguchi, Kenji Watanabe, Eva M. Weig

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices that combine the spin degree of freedom with the cavity optomechanical toolbox. In this Letter, we report the first observation of radiation pressure backaction at telecom wavelengths with a hBN drum-head mechanical resonator. The thermomechanical motion of the resonator is coupled to the optical mode of a high finesse fiber-based Fabry-Pérot microcavity in a membrane-in-the-middle configuration. We are able to resolve the optical spring effect and optomechanical damping with a single photon coupling strength of g0/2π = 1200 Hz. Our results pave the way for tailoring the mechanical properties of hBN resonators with light.

Original languageEnglish
Pages (from-to)6301-6307
Number of pages7
JournalNano Letters
Volume23
Issue number14
DOIs
StatePublished - 26 Jul 2023

Keywords

  • 2D materials
  • hexagonal boron nitride
  • microcavity
  • nanomechanical resonators
  • optomechanics

Fingerprint

Dive into the research topics of 'Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator'. Together they form a unique fingerprint.

Cite this