Abstract
Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices that combine the spin degree of freedom with the cavity optomechanical toolbox. In this Letter, we report the first observation of radiation pressure backaction at telecom wavelengths with a hBN drum-head mechanical resonator. The thermomechanical motion of the resonator is coupled to the optical mode of a high finesse fiber-based Fabry-Pérot microcavity in a membrane-in-the-middle configuration. We are able to resolve the optical spring effect and optomechanical damping with a single photon coupling strength of g0/2π = 1200 Hz. Our results pave the way for tailoring the mechanical properties of hBN resonators with light.
Original language | English |
---|---|
Pages (from-to) | 6301-6307 |
Number of pages | 7 |
Journal | Nano Letters |
Volume | 23 |
Issue number | 14 |
DOIs | |
State | Published - 26 Jul 2023 |
Keywords
- 2D materials
- hexagonal boron nitride
- microcavity
- nanomechanical resonators
- optomechanics