Quantum Wiretap Channel Coding Assisted by Noisy Correlation

Minglai Cai, Andreas Winter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the private classical capacity of a quantum wiretap channel, where the users (sender Alice, receiver Bob, and eavesdropper Eve) have access to the resource of a shared quantum state, additionally to their channel inputs and outputs. An extreme case is maximal entanglement or a secret key between Alice and Bob, both of which would allow for one-time padding the message. But here both the wiretap channel and the shared state are general. In the other extreme case that the state is trivial, we recover the wiretap channel and its private capacity [N. Cai, A. Winter and R. W. Yeung, Probl. Inform. Transm. 40(4):318-336, 2004]. We show how to use the given resource state to build a code for secret classical communication. Our main result is a lower bound on the assisted private capacity, which asymptotically meets the multi-letter converse and which encompasses all sorts of previous results as special cases.

Original languageEnglish
Title of host publication2024 IEEE International Symposium on Information Theory, ISIT 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3101-3105
Number of pages5
ISBN (Electronic)9798350382846
DOIs
StatePublished - 2024
Event2024 IEEE International Symposium on Information Theory, ISIT 2024 - Athens, Greece
Duration: 7 Jul 202412 Jul 2024

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2024 IEEE International Symposium on Information Theory, ISIT 2024
Country/TerritoryGreece
CityAthens
Period7/07/2412/07/24

Keywords

  • communication via quantum channels
  • Quantum information
  • wiretap channels

Fingerprint

Dive into the research topics of 'Quantum Wiretap Channel Coding Assisted by Noisy Correlation'. Together they form a unique fingerprint.

Cite this