Quantum Master Equation for a Lossy Josephson Traveling-Wave Parametric Amplifier

Yongjie Yuan, Michael Haider, Christian Jirauschek

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this paper, we present a theoretical framework for investigating losses and thermal fluctuations in a Josephson traveling-wave parametric amplifier (JTWPA). Our model is based on a discrete-mode Hamiltonian which includes a four-wave-mixing process and system-reservoir interactions. From this Hamiltonian, we derive a quantum master equation that describes the lossy Josephson-junction-embedded transmission line. The resulting equation of motion for the reduced density operator is applied for evaluating the average photon number in the signal mode. We present an analytic solution for the case of a dispersionless transmission line, where the phase-modulation effects can be neglected, and evaluate the photon number spectrum of a JTWPA structure with parameters from the literature. The quantum master equation is especially advantageous for a direct treatment of the expectation values of the photon number, in comparison to other strategies.

Original languageEnglish
Title of host publication2022 IEEE International Topical Meeting on Microwave Photonics, MWP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665421218
DOIs
StatePublished - 2022
Event2022 IEEE International Topical Meeting on Microwave Photonics, MWP 2022 - Orlando, United States
Duration: 3 Oct 20227 Oct 2022

Publication series

Name2022 IEEE International Topical Meeting on Microwave Photonics, MWP 2022 - Proceedings

Conference

Conference2022 IEEE International Topical Meeting on Microwave Photonics, MWP 2022
Country/TerritoryUnited States
CityOrlando
Period3/10/227/10/22

Fingerprint

Dive into the research topics of 'Quantum Master Equation for a Lossy Josephson Traveling-Wave Parametric Amplifier'. Together they form a unique fingerprint.

Cite this