TY - GEN
T1 - Quantum Advantage with Noisy Shallow Circuits in 3D
AU - Bravyi, Sergey
AU - Gosset, David
AU - Koenig, Robert
AU - Tomamichel, Marco
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/11
Y1 - 2019/11
N2 - Prior work has shown that there exists a relation problem which can be solved with certainty by a constant-depth quantum circuit composed of geometrically local gates in two dimensions, but cannot be solved with high probability by any classical constant depth circuit composed of bounded fan-in gates. Here we provide two extensions of this result. Firstly, we show that a separation in computational power persists even when the constant-depth quantum circuit is restricted to geometrically local gates in one dimension. The corresponding quantum algorithm is the simplest we know of which achieves a quantum advantage of this type. Our second, main result, is that a separation persists even if the shallow quantum circuit is corrupted by noise. We construct a relation problem which can be solved with near certainty using a noisy constant-depth quantum circuit composed of geometrically local gates in three dimensions, provided the noise rate is below a certain constant threshold value. On the other hand, the problem cannot be solved with high probability by a noise-free classical circuit of constant depth. A key component of the proof is a quantum error-correcting code which admits constant-depth logical Clifford gates and single-shot logical state preparation. We show that the surface code meets these criteria.
AB - Prior work has shown that there exists a relation problem which can be solved with certainty by a constant-depth quantum circuit composed of geometrically local gates in two dimensions, but cannot be solved with high probability by any classical constant depth circuit composed of bounded fan-in gates. Here we provide two extensions of this result. Firstly, we show that a separation in computational power persists even when the constant-depth quantum circuit is restricted to geometrically local gates in one dimension. The corresponding quantum algorithm is the simplest we know of which achieves a quantum advantage of this type. Our second, main result, is that a separation persists even if the shallow quantum circuit is corrupted by noise. We construct a relation problem which can be solved with near certainty using a noisy constant-depth quantum circuit composed of geometrically local gates in three dimensions, provided the noise rate is below a certain constant threshold value. On the other hand, the problem cannot be solved with high probability by a noise-free classical circuit of constant depth. A key component of the proof is a quantum error-correcting code which admits constant-depth logical Clifford gates and single-shot logical state preparation. We show that the surface code meets these criteria.
KW - quantum algorithms
KW - quantum error correction
UR - http://www.scopus.com/inward/record.url?scp=85078437263&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2019.00064
DO - 10.1109/FOCS.2019.00064
M3 - Conference contribution
AN - SCOPUS:85078437263
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 995
EP - 999
BT - Proceedings - 2019 IEEE 60th Annual Symposium on Foundations of Computer Science, FOCS 2019
PB - IEEE Computer Society
T2 - 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019
Y2 - 9 November 2019 through 12 November 2019
ER -