TY - JOUR
T1 - Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue
AU - Specht, Katja
AU - Richter, Thomas
AU - Müller, Ulrike
AU - Walch, Axel
AU - Werner, Martin
AU - Hofler, Heinz
PY - 2001/2
Y1 - 2001/2
N2 - Formalin-fixed, paraffin-embedded tissue is the most widely available material for retrospective clinical studies. In combination with the potential of genomics, these tissues represent an invaluable resource for the elucidation of disease mechanisms and validation of differentially expressed genes as novel therapeutic targets or prognostic indicators. We describe here an approach that, in combination with laser-assisted microdissection allows quantitative gene expression analysis in formalin-fixed, paraffin-embedded archival tissue. Using an optimized RNA microscale extraction procedure in conjunction with real-time quantitative reverse transcriptase-polymerase chain reaction based on fluorogenic TaqMan methodology, we analyzed the expression of a panel of cancer-relevant genes, EGF-R, HER-2/neu, FGF-R4, p21/WAF1/Cip1, MDM2, and HPRT and PGK as controls. We demonstrate that expression level determinations from formalin-fixed, paraffin-embedded tissues are accurate and reproducible. Measurements were comparable to those obtained with matching fresh-frozen tissue and neither fixation grade nor time significandy affected the results. Laser microdissection studies with 5-μm thick sections and defined numbers of tumor cells demonstrated that reproducible quantitation of specific mRNAs can be achieved with only 50 cells. We applied our approach to HER-2/neu quantitative gene expression analysis in 54 microdissected tumor and nonneoplastic archival samples from patients with Barrett's esophageal adenocarcinoma and showed that the results matched those obtained in parallel by fluorescence in situ hybridization and immunohistochemistry. Thus, the combination of laser-assisted microdissection and real-time TaqMan reverse transcriptase-polymerase chain reaction opens new avenues for the investigation and clinical validation of gene expression changes in archival tissue specimens.
AB - Formalin-fixed, paraffin-embedded tissue is the most widely available material for retrospective clinical studies. In combination with the potential of genomics, these tissues represent an invaluable resource for the elucidation of disease mechanisms and validation of differentially expressed genes as novel therapeutic targets or prognostic indicators. We describe here an approach that, in combination with laser-assisted microdissection allows quantitative gene expression analysis in formalin-fixed, paraffin-embedded archival tissue. Using an optimized RNA microscale extraction procedure in conjunction with real-time quantitative reverse transcriptase-polymerase chain reaction based on fluorogenic TaqMan methodology, we analyzed the expression of a panel of cancer-relevant genes, EGF-R, HER-2/neu, FGF-R4, p21/WAF1/Cip1, MDM2, and HPRT and PGK as controls. We demonstrate that expression level determinations from formalin-fixed, paraffin-embedded tissues are accurate and reproducible. Measurements were comparable to those obtained with matching fresh-frozen tissue and neither fixation grade nor time significandy affected the results. Laser microdissection studies with 5-μm thick sections and defined numbers of tumor cells demonstrated that reproducible quantitation of specific mRNAs can be achieved with only 50 cells. We applied our approach to HER-2/neu quantitative gene expression analysis in 54 microdissected tumor and nonneoplastic archival samples from patients with Barrett's esophageal adenocarcinoma and showed that the results matched those obtained in parallel by fluorescence in situ hybridization and immunohistochemistry. Thus, the combination of laser-assisted microdissection and real-time TaqMan reverse transcriptase-polymerase chain reaction opens new avenues for the investigation and clinical validation of gene expression changes in archival tissue specimens.
UR - http://www.scopus.com/inward/record.url?scp=0035134463&partnerID=8YFLogxK
U2 - 10.1016/S0002-9440(10)63985-5
DO - 10.1016/S0002-9440(10)63985-5
M3 - Article
C2 - 11159180
AN - SCOPUS:0035134463
SN - 0002-9440
VL - 158
SP - 419
EP - 429
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 2
ER -