Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI

Siying Wang, Christian Ledig, Joseph V. Hajnal, Serena J. Counsell, Julia A. Schnabel, Maria Deprez

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Myelination is considered to be an important developmental process during human brain maturation and closely correlated with gestational age. Quantitative assessment of the myelination status requires dedicated imaging, but the conventional T2-weighted scans routinely acquired during clinical imaging of neonates carry signatures that are thought to be associated with myelination. In this work, we develop a quatitative marker of progressing myelination for assessment preterm neonatal brain maturation based on novel automatic segmentation method for myelin-like signals on T2-weighted magnetic resonance images. Firstly we define a segmentation protocol for myelin-like signals. We then develop an expectation-maximization framework to obtain the automatic segmentations of myelin-like signals with explicit class for partial volume voxels whose locations are configured in relation to the composing pure tissues via second-order Markov random fields. The proposed segmentation achieves high Dice overlaps of 0.83 with manual annotations. The automatic segmentations are then used to track volumes of myelinated tissues in the regions of the central brain structures and brainstem. Finally, we construct a spatio-temporal growth models for myelin-like signals, which allows us to predict gestational age at scan in preterm infants with root mean squared error 1.41 weeks.

Original languageEnglish
Article number12938
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI'. Together they form a unique fingerprint.

Cite this