Quantification of metabolites in magnetic resonance spectroscopic imaging using machine learning

Dhritiman Das, Eduardo Coello, Rolf F. Schulte, Bjoern H. Menze

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Magnetic Resonance Spectroscopic Imaging (MRSI) is a clinical imaging modality for measuring tissue metabolite levels in-vivo. An accurate estimation of spectral parameters allows for better assessment of spectral quality and metabolite concentration levels. The current gold standard quantification method is the LCModel - a commercial fitting tool. However, this fails for spectra having poor signal-to-noise ratio (SNR) or a large number of artifacts. This paper introduces a framework based on random forest regression for accurate estimation of the output parameters of a model based analysis of MR spectroscopy data. The goal of our proposed framework is to learn the spectral features from a training set comprising of different variations of both simulated and in-vivo brain spectra and then use this learning for the subsequent metabolite quantification. Experiments involve training and testing on simulated and in-vivo human brain spectra. We estimate parameters such as concentration of metabolites and compare our results with that from the LCModel.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditorsLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
PublisherSpringer Verlag
Pages462-470
Number of pages9
ISBN (Print)9783319661780
DOIs
StatePublished - 2017
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 11 Sep 201713 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period11/09/1713/09/17

Fingerprint

Dive into the research topics of 'Quantification of metabolites in magnetic resonance spectroscopic imaging using machine learning'. Together they form a unique fingerprint.

Cite this