@inproceedings{7f8f9621180742548a2c395fef38c7e1,
title = "Quantification of metabolites in magnetic resonance spectroscopic imaging using machine learning",
abstract = "Magnetic Resonance Spectroscopic Imaging (MRSI) is a clinical imaging modality for measuring tissue metabolite levels in-vivo. An accurate estimation of spectral parameters allows for better assessment of spectral quality and metabolite concentration levels. The current gold standard quantification method is the LCModel - a commercial fitting tool. However, this fails for spectra having poor signal-to-noise ratio (SNR) or a large number of artifacts. This paper introduces a framework based on random forest regression for accurate estimation of the output parameters of a model based analysis of MR spectroscopy data. The goal of our proposed framework is to learn the spectral features from a training set comprising of different variations of both simulated and in-vivo brain spectra and then use this learning for the subsequent metabolite quantification. Experiments involve training and testing on simulated and in-vivo human brain spectra. We estimate parameters such as concentration of metabolites and compare our results with that from the LCModel.",
author = "Dhritiman Das and Eduardo Coello and Schulte, {Rolf F.} and Menze, {Bjoern H.}",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing AG 2017.; 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 ; Conference date: 11-09-2017 Through 13-09-2017",
year = "2017",
doi = "10.1007/978-3-319-66179-7_53",
language = "English",
isbn = "9783319661780",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "462--470",
editor = "Lena Maier-Hein and Alfred Franz and Pierre Jannin and Simon Duchesne and Maxime Descoteaux and Collins, {D. Louis}",
booktitle = "Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings",
}