TY - GEN
T1 - Quantification of energy transformation processes between acoustic and hydrodynamic modes in non-compact thermoacoustic systems via a Helmholtz-Hodge decomposition approach
AU - Hofmeister, Thomas
AU - Hummel, Tobias
AU - Schuermans, Bruno
AU - Sattelmayer, Thomas
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Solutions of the Linearized Euler Equations (LEE) are composed of acoustic, entropy and vortical perturbation types. The excitation of the latter can be provoked by a transformation of acoustic into rotational energy, which originates from the interaction between acoustics and a mean flow shear-layer. This is known as acoustically induced vortex shedding and represents the phenomenon of interest in this study. In the field of thermoacoustics, numerical eigenfrequency simulations with the LEE have moved into focus to determine the acoustic damping rates associated with vortex shedding to complete thermoacoustic stability analyses of gas turbine combustors. However, there is yet no fundamental investigation existent, which establishes the legitimation to consider these LEE damping rates for this purpose. This question arises due to the implicit presence of vortical disturbances caused by vortex shedding next to the acoustic ones in LEE eigensolutions. In conclusion, the corresponding damping rates are not expected to represent the pure acoustic damping rates, which are exclusively required for a thermoacoustic stability analysis. The main objective of this work comprises the clarification, whether damping rates obtained by straightforwardly performed LEE eigenfrequency simulations can be used for a thermoacoustic stability assessment, although their eigen-solutions are ”polluted” by further disturbance types, i.e. the vortical one in this study. Therefore, a Helmholtz-Hodge decomposition approach is applied to LEE eigenmode shapes, which allows to explicitly access acoustic and vortical disturbance fields. These are used to extract the unambiguous, pure acoustic damping rates from LEE eigensolutions via evaluations of appropriate energy terms. The resulting damping rates are finally compared to the corresponding, original LEE damping rates and their experimental counterparts.
AB - Solutions of the Linearized Euler Equations (LEE) are composed of acoustic, entropy and vortical perturbation types. The excitation of the latter can be provoked by a transformation of acoustic into rotational energy, which originates from the interaction between acoustics and a mean flow shear-layer. This is known as acoustically induced vortex shedding and represents the phenomenon of interest in this study. In the field of thermoacoustics, numerical eigenfrequency simulations with the LEE have moved into focus to determine the acoustic damping rates associated with vortex shedding to complete thermoacoustic stability analyses of gas turbine combustors. However, there is yet no fundamental investigation existent, which establishes the legitimation to consider these LEE damping rates for this purpose. This question arises due to the implicit presence of vortical disturbances caused by vortex shedding next to the acoustic ones in LEE eigensolutions. In conclusion, the corresponding damping rates are not expected to represent the pure acoustic damping rates, which are exclusively required for a thermoacoustic stability analysis. The main objective of this work comprises the clarification, whether damping rates obtained by straightforwardly performed LEE eigenfrequency simulations can be used for a thermoacoustic stability assessment, although their eigen-solutions are ”polluted” by further disturbance types, i.e. the vortical one in this study. Therefore, a Helmholtz-Hodge decomposition approach is applied to LEE eigenmode shapes, which allows to explicitly access acoustic and vortical disturbance fields. These are used to extract the unambiguous, pure acoustic damping rates from LEE eigensolutions via evaluations of appropriate energy terms. The resulting damping rates are finally compared to the corresponding, original LEE damping rates and their experimental counterparts.
UR - http://www.scopus.com/inward/record.url?scp=85210057037&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90240
DO - 10.1115/GT2019-90240
M3 - Conference contribution
AN - SCOPUS:85210057037
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -