Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model

Christian Tomani, David Vilar, Markus Freitag, Colin Cherry, Subhajit Naskar, Mara Finkelstein, Xavier Garcia, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Maximum-a-posteriori (MAP) decoding is the most widely used decoding strategy for neural machine translation (NMT) models. The underlying assumption is that model probability correlates well with human judgment, with better translations getting assigned a higher score by the model. However, research has shown that this assumption does not always hold, and generation quality can be improved by decoding to optimize a utility function backed by a metric or quality-estimation signal, as is done by Minimum Bayes Risk (MBR) or quality-aware decoding. The main disadvantage of these approaches is that they require an additional model to calculate the utility function during decoding, significantly increasing the computational cost. In this paper, we propose to make the NMT models themselves quality-aware by training them to estimate the quality of their own output. Using this approach for MBR decoding we can drastically reduce the size of the candidate list, resulting in a speedup of two-orders of magnitude. When applying our method to MAP decoding we obtain quality gains similar or even superior to quality reranking approaches, but with the efficiency of single pass decoding.

Original languageEnglish
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages15660-15679
Number of pages20
ISBN (Electronic)9798891760943
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period11/08/2416/08/24

Fingerprint

Dive into the research topics of 'Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model'. Together they form a unique fingerprint.

Cite this