Provable variational inference for constrained log-submodular models

Josip Djolonga, Stefanie Jegelka, Andreas Krause

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

Submodular maximization problems appear in several areas of machine learning and data science, as many useful modelling concepts such as diversity and coverage satisfy this natural diminishing returns property. Because the data defining these functions, as well as the decisions made with the computed solutions, are subject to statistical noise and randomness, it is arguably necessary to go beyond computing a single approximate optimum and quantify its inherent uncertainty. To this end, we define a rich class of probabilistic models associated with constrained submodular maximization problems. These capture log-submodular dependencies of arbitrary order between the variables, but also satisfy hard combinatorial constraints. Namely, the variables are assumed to take on one of - possibly exponentially many - set of states, which form the bases of a matroid. To perform inference in these models we design novel variational inference algorithms, which carefully leverage the combinatorial and probabilistic properties of these objects. In addition to providing completely tractable and well-understood variational approximations, our approach results in the minimization of a convex upper bound on the log-partition function. The bound can be efficiently evaluated using greedy algorithms and optimized using any first-order method. Moreover, for the case of facility location and weighted coverage functions, we prove the first constant factor guarantee in this setting - an efficiently certifiable e/(e − 1) approximation of the log-partition function. Finally, we empirically demonstrate the effectiveness of our approach on several instances.

Original languageEnglish
Pages (from-to)2697-2707
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: 2 Dec 20188 Dec 2018

Fingerprint

Dive into the research topics of 'Provable variational inference for constrained log-submodular models'. Together they form a unique fingerprint.

Cite this