TY - JOUR
T1 - Protective effects of Gαi3 deficiency in a murine heart-failure model of β1-adrenoceptor overexpression
AU - Schröper, Tobias
AU - Mehrkens, Dennis
AU - Leiss, Veronika
AU - Tellkamp, Frederik
AU - Engelhardt, Stefan
AU - Herzig, Stefan
AU - Birnbaumer, Lutz
AU - Nürnberg, Bernd
AU - Matthes, Jan
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2024/4
Y1 - 2024/4
N2 - We have shown that in murine cardiomyopathy caused by overexpression of the β1-adrenoceptor, Gαi2-deficiency is detrimental. Given the growing evidence for isoform-specific Gαi-functions, we now examined the consequences of Gαi3 deficiency in the same heart-failure model. Mice overexpressing cardiac β1-adrenoceptors with (β1-tg) or without Gαi3-expression (β1-tg/Gαi3−/−) were compared to C57BL/6 wildtypes and global Gαi3-knockouts (Gαi3−/−). The life span of β1-tg mice was significantly shortened but improved when Gαi3 was lacking (95% CI: 592–655 vs. 644–747 days). At 300 days of age, left-ventricular function and survival rate were similar in all groups. At 550 days of age, β1-tg but not β1-tg/Gαi3−/− mice displayed impaired ejection fraction (35 ± 18% vs. 52 ± 16%) compared to wildtype (59 ± 4%) and Gαi3−/− mice (60 ± 5%). Diastolic dysfunction of β1-tg mice was prevented by Gαi3 deficiency, too. The increase of ANP mRNA levels and ventricular fibrosis observed in β1-tg hearts was significantly attenuated in β1-tg/Gαi3−/− mice. Transcript levels of phospholamban, ryanodine receptor 2, and cardiac troponin I were similar in all groups. However, Western blots and phospho-proteomic analyses showed that in β1-tg, but not β1-tg/Gαi3−/− ventricles, phospholamban protein was reduced while its phosphorylation increased. Here, we show that in mice overexpressing the cardiac β1-adrenoceptor, Gαi3 deficiency slows or even prevents cardiomyopathy and increases shortened life span. Previously, we found Gαi2 deficiency to aggravate cardiac dysfunction and mortality in the same heart-failure model. Our findings indicate isoform-specific interventions into Gi-dependent signaling to be promising cardio-protective strategies.
AB - We have shown that in murine cardiomyopathy caused by overexpression of the β1-adrenoceptor, Gαi2-deficiency is detrimental. Given the growing evidence for isoform-specific Gαi-functions, we now examined the consequences of Gαi3 deficiency in the same heart-failure model. Mice overexpressing cardiac β1-adrenoceptors with (β1-tg) or without Gαi3-expression (β1-tg/Gαi3−/−) were compared to C57BL/6 wildtypes and global Gαi3-knockouts (Gαi3−/−). The life span of β1-tg mice was significantly shortened but improved when Gαi3 was lacking (95% CI: 592–655 vs. 644–747 days). At 300 days of age, left-ventricular function and survival rate were similar in all groups. At 550 days of age, β1-tg but not β1-tg/Gαi3−/− mice displayed impaired ejection fraction (35 ± 18% vs. 52 ± 16%) compared to wildtype (59 ± 4%) and Gαi3−/− mice (60 ± 5%). Diastolic dysfunction of β1-tg mice was prevented by Gαi3 deficiency, too. The increase of ANP mRNA levels and ventricular fibrosis observed in β1-tg hearts was significantly attenuated in β1-tg/Gαi3−/− mice. Transcript levels of phospholamban, ryanodine receptor 2, and cardiac troponin I were similar in all groups. However, Western blots and phospho-proteomic analyses showed that in β1-tg, but not β1-tg/Gαi3−/− ventricles, phospholamban protein was reduced while its phosphorylation increased. Here, we show that in mice overexpressing the cardiac β1-adrenoceptor, Gαi3 deficiency slows or even prevents cardiomyopathy and increases shortened life span. Previously, we found Gαi2 deficiency to aggravate cardiac dysfunction and mortality in the same heart-failure model. Our findings indicate isoform-specific interventions into Gi-dependent signaling to be promising cardio-protective strategies.
KW - Adrenergic receptor
KW - Cardiomyopathy
KW - Cardioprotection
KW - G protein
KW - Heart failure
UR - http://www.scopus.com/inward/record.url?scp=85174255261&partnerID=8YFLogxK
U2 - 10.1007/s00210-023-02751-8
DO - 10.1007/s00210-023-02751-8
M3 - Article
C2 - 37843590
AN - SCOPUS:85174255261
SN - 0028-1298
VL - 397
SP - 2401
EP - 2420
JO - Naunyn-Schmiedeberg's Archives of Pharmacology
JF - Naunyn-Schmiedeberg's Archives of Pharmacology
IS - 4
ER -