Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning

Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten Schnatbaum, Johannes Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe, Andreas Huhmer, Ulf Reimer, Hans Christian Ehrlich, Stephan Aiche, Bernhard Kuster, Mathias Wilhelm

Research output: Contribution to journalArticlepeer-review

545 Scopus citations

Abstract

In mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impairs the realization of the full potential of these approaches. Here, we extended the ProteomeTools synthetic peptide library to 550,000 tryptic peptides and 21 million high-quality tandem mass spectra. We trained a deep neural network, termed Prosit, resulting in chromatographic retention time and fragment ion intensity predictions that exceed the quality of the experimental data. Integrating Prosit into database search pipelines led to more identifications at >10× lower false discovery rates. We show the general applicability of Prosit by predicting spectra for proteases other than trypsin, generating spectral libraries for data-independent acquisition and improving the analysis of metaproteomes. Prosit is integrated into ProteomicsDB, allowing search result re-scoring and custom spectral library generation for any organism on the basis of peptide sequence alone.

Original languageEnglish
Pages (from-to)509-518
Number of pages10
JournalNature Methods
Volume16
Issue number6
DOIs
StatePublished - 1 Jun 2019

Fingerprint

Dive into the research topics of 'Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning'. Together they form a unique fingerprint.

Cite this