Processing-Aware Real-Time Rendering for Optimized Tissue Visualization in Intraoperative 4D OCT

Jakob Weiss, Michael Sommersperger, Ali Nasseri, Abouzar Eslami, Ulrich Eck, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Intraoperative Optical Coherence Tomography (iOCT) has advanced in recent years to provide real-time high resolution volumetric imaging for ophthalmic surgery. It enables real-time 3D feedback during precise surgical maneuvers. Intraoperative 4D OCT generally exhibits lower signal-to-noise ratio compared to diagnostic OCT and visualization is complicated by instrument shadows occluding retinal tissue. Additional constraints of processing data rates upwards of 6 GB/s create unique challenges for advanced visualization of 4D OCT. Prior approaches for real-time 4D iOCT rendering have been limited to applying simple denoising filters and colorization to improve visualization. We present a novel real-time rendering pipeline that provides enhanced intraoperative visualization and is specifically designed for the high data rates of 4D iOCT. We decompose the volume into a static part consisting of the retinal tissue and a dynamic part including the instrument. Aligning the static parts over time allows temporal compounding of these structures for improved image quality. We employ a translational motion model and use axial projection images to reduce the dimensionality of the alignment. A model-based instrument segmentation on the projections discriminates static from dynamic parts and is used to exclude instruments from the compounding. Our real-time rendering method combines the compounded static information with the latest iOCT data to provide a visualization which compensates instrument shadows and improves instrument visibility. We evaluate the individual parts of our pipeline on pre-recorded OCT volumes and demonstrate the effectiveness of our method on a recorded volume sequence with a moving retinal forceps.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages267-276
Number of pages10
ISBN (Print)9783030597214
DOIs
StatePublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12265 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period4/10/208/10/20

Keywords

  • Advanced intraoperative visualization
  • Optical Coherence Tomography
  • Real-time volumetric processing

Fingerprint

Dive into the research topics of 'Processing-Aware Real-Time Rendering for Optimized Tissue Visualization in Intraoperative 4D OCT'. Together they form a unique fingerprint.

Cite this