PROBABILISTICALLY ROBUST RECOURSE: NAVIGATING THE TRADE-OFFS BETWEEN COSTS AND ROBUSTNESS IN ALGORITHMIC RECOURSE

Martin Pawelczyk, Teresa Datta, Johannes van-Den-Heuvel, Gjergji Kasneci, Himabindu Lakkaraju

Research output: Contribution to conferencePaperpeer-review

11 Scopus citations

Abstract

As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means for recourse. While several approaches have been proposed to construct recourses for affected individuals, the recourses output by these methods either achieve low costs (i.e., ease-of-implementation) or robustness to small perturbations (i.e., noisy implementations of recourses), but not both due to the inherent trade-offs between the recourse costs and robustness. Furthermore, prior approaches do not provide end users with any agency over navigating the aforementioned trade-offs. In this work, we address the above challenges by proposing the first algorithmic framework which enables users to effectively manage the recourse cost vs. robustness trade-offs. More specifically, our framework Probabilistically ROBust rEcourse (PROBE) lets users choose the probability with which a recourse could get invalidated (recourse invalidation rate) if small changes are made to the recourse i.e., the recourse is implemented somewhat noisily. To this end, we propose a novel objective function which simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation rates, minimizes recourse costs, and also ensures that the resulting recourse achieves a positive model prediction. We develop novel theoretical results to characterize the recourse invalidation rates corresponding to any given instance w.r.t. different classes of underlying models (e.g., linear models, tree based models etc.), and leverage these results to efficiently optimize the proposed objective. Experimental evaluation with multiple real world datasets demonstrates the efficacy of the proposed framework.

Original languageEnglish
StatePublished - 2023
Externally publishedYes
Event11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda
Duration: 1 May 20235 May 2023

Conference

Conference11th International Conference on Learning Representations, ICLR 2023
Country/TerritoryRwanda
CityKigali
Period1/05/235/05/23

Fingerprint

Dive into the research topics of 'PROBABILISTICALLY ROBUST RECOURSE: NAVIGATING THE TRADE-OFFS BETWEEN COSTS AND ROBUSTNESS IN ALGORITHMIC RECOURSE'. Together they form a unique fingerprint.

Cite this