TY - GEN
T1 - Priority assignment for event-triggered systems using mathematical programming
AU - Lukasiewycz, Martin
AU - Steinhorst, Sebastian
AU - Chakraborty, Samarjit
PY - 2013
Y1 - 2013
N2 - This paper presents a methodology based on mathematical programming for the priority assignment of processes and messages in event-triggered systems with tight end-to-end real-time deadlines. For this purpose, the problem is converted into a Quadratically Constrained Quadratic Program (QCQP) and addressed with a state-of-the-art solver. The formulation includes preemptive as well as non-preemptive schedulers and avoids cyclic dependencies that may lead to intractable realtime analysis problems. For problems with stringent real-time requirements, the proposed mathematical programming method is capable of finding a feasible solution efficiently where other approaches suffer from a poor scalability. In case there exists no feasible solution, an algorithm is presented that uses the proposed method to find a minimal reason for the infeasibility which may be used as a feedback to the designer. To give evidence of the scalability of the proposed method and in order to show the clear benefit over existing approaches, a set of synthetic test cases is evaluated. Finally, a large realistic case study is introduced and solved, showing the applicability of the proposed method in the automotive domain.
AB - This paper presents a methodology based on mathematical programming for the priority assignment of processes and messages in event-triggered systems with tight end-to-end real-time deadlines. For this purpose, the problem is converted into a Quadratically Constrained Quadratic Program (QCQP) and addressed with a state-of-the-art solver. The formulation includes preemptive as well as non-preemptive schedulers and avoids cyclic dependencies that may lead to intractable realtime analysis problems. For problems with stringent real-time requirements, the proposed mathematical programming method is capable of finding a feasible solution efficiently where other approaches suffer from a poor scalability. In case there exists no feasible solution, an algorithm is presented that uses the proposed method to find a minimal reason for the infeasibility which may be used as a feedback to the designer. To give evidence of the scalability of the proposed method and in order to show the clear benefit over existing approaches, a set of synthetic test cases is evaluated. Finally, a large realistic case study is introduced and solved, showing the applicability of the proposed method in the automotive domain.
UR - http://www.scopus.com/inward/record.url?scp=84885675723&partnerID=8YFLogxK
U2 - 10.7873/date.2013.205
DO - 10.7873/date.2013.205
M3 - Conference contribution
AN - SCOPUS:84885675723
SN - 9783981537000
T3 - Proceedings -Design, Automation and Test in Europe, DATE
SP - 982
EP - 987
BT - Proceedings - Design, Automation and Test in Europe, DATE 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th Design, Automation and Test in Europe Conference and Exhibition, DATE 2013
Y2 - 18 March 2013 through 22 March 2013
ER -