PrimiTect: Fast Continuous Hough Voting for Primitive Detection

Christiane Sommer, Yumin Sun, Erik Bylow, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

This paper tackles the problem of data abstraction in the context of 3D point sets. Our method classifies points into different geometric primitives, such as planes and cones, leading to a compact representation of the data. Being based on a semi-global Hough voting scheme, the method does not need initialization and is robust, accurate, and efficient. We use a local, low-dimensional parameterization of primitives to determine type, shape and pose of the object that a point belongs to. This makes our algorithm suitable to run on devices with low computational power, as often required in robotics applications. The evaluation shows that our method outperforms state-of-the-art methods both in terms of accuracy and robustness.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8404-8410
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: 31 May 202031 Aug 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period31/05/2031/08/20

Fingerprint

Dive into the research topics of 'PrimiTect: Fast Continuous Hough Voting for Primitive Detection'. Together they form a unique fingerprint.

Cite this