Primer, pipelines, parameters: Issues in 16s rrna gene sequencing

Isabel Abellan-Schneyder, Monica S. Matchado, Sandra Reitmeier, Alina Sommer, Zeno Sewald, Jan Baumbach, Markus List, Klaus Neuhaus

Research output: Contribution to journalArticlepeer-review

236 Scopus citations

Abstract

Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1- V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomicbased 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.

Original languageEnglish
Article numbere01202-20
JournalmSphere
Volume6
Issue number1
DOIs
StatePublished - Feb 2021

Keywords

  • 16S rRNA gene sequencing
  • Amplicon sequencing
  • Bioinformatic settings
  • Clustering
  • Databases
  • Microbiome
  • Mock communities
  • Variable regions

Fingerprint

Dive into the research topics of 'Primer, pipelines, parameters: Issues in 16s rrna gene sequencing'. Together they form a unique fingerprint.

Cite this