TY - JOUR
T1 - Preparation and spectroscopic properties of monolayer-protected silver nanoclusters
AU - Farrag, Mostafa
AU - Thämer, Martin
AU - Tschurl, Martin
AU - Bürgi, Thomas
AU - Heiz, Ueli
PY - 2012/4/12
Y1 - 2012/4/12
N2 - Silver nanoclusters protected by 2-phenylethanethiol (1), 4-fluorothiophenol (2), and l-glutathione (3) ligands were successfully synthesized. The optical properties of the prepared silver nanoclusters were studied. The absorption signal of Ag@SCH 2CH 2Ph in toluene can be found at 469 nm, and Ag@SPhF in THF shows two absorption bands at 395 and 462 nm. Ag@SG in water absorbs at 478 nm. Mie theory in combination with the Drude model clearly indicates the peaks in the spectra originate from plasmonic transitions. In addition, the damping constant as well as the dielectric constant of the surrounding medium was determined. In addition, the CD spectra of silver nanoclusters protected by the three ligands (1-3) were also studied. As expected, only the clusters of type 3 gave rise to chiroptical activity across the visible and near-ultraviolet regions. The location and strength of the optical activity suggest an electronic structure of the metal that is highly sensitive to the chiral environment imposed by the glutathione ligand. The morphology and size of the prepared nanoclusters were analyzed by using transmission electron microscopy (TEM). TEM analysis showed that the particles of all three types of silver clusters were small than 5 nm, with an average size of around 2 nm. The analysis of the FTIR spectra elucidated the structural properties of the ligands binding to the nanoclusters. By comparing the IR absorption spectra of pure ligands with those of the protected silver nanoclusters, the disappearance of the S-H vibrational band (2535-2564 cm -1) in the protected silver nanoclusters confirmed the anchoring of ligands to the cluster surface through the sulfur atom. By elemental analysis and thermogravimetric analysis, the Ag/S ratio and, hence, the number of ligands surrounding a Ag atom could be determined.
AB - Silver nanoclusters protected by 2-phenylethanethiol (1), 4-fluorothiophenol (2), and l-glutathione (3) ligands were successfully synthesized. The optical properties of the prepared silver nanoclusters were studied. The absorption signal of Ag@SCH 2CH 2Ph in toluene can be found at 469 nm, and Ag@SPhF in THF shows two absorption bands at 395 and 462 nm. Ag@SG in water absorbs at 478 nm. Mie theory in combination with the Drude model clearly indicates the peaks in the spectra originate from plasmonic transitions. In addition, the damping constant as well as the dielectric constant of the surrounding medium was determined. In addition, the CD spectra of silver nanoclusters protected by the three ligands (1-3) were also studied. As expected, only the clusters of type 3 gave rise to chiroptical activity across the visible and near-ultraviolet regions. The location and strength of the optical activity suggest an electronic structure of the metal that is highly sensitive to the chiral environment imposed by the glutathione ligand. The morphology and size of the prepared nanoclusters were analyzed by using transmission electron microscopy (TEM). TEM analysis showed that the particles of all three types of silver clusters were small than 5 nm, with an average size of around 2 nm. The analysis of the FTIR spectra elucidated the structural properties of the ligands binding to the nanoclusters. By comparing the IR absorption spectra of pure ligands with those of the protected silver nanoclusters, the disappearance of the S-H vibrational band (2535-2564 cm -1) in the protected silver nanoclusters confirmed the anchoring of ligands to the cluster surface through the sulfur atom. By elemental analysis and thermogravimetric analysis, the Ag/S ratio and, hence, the number of ligands surrounding a Ag atom could be determined.
UR - http://www.scopus.com/inward/record.url?scp=84859736883&partnerID=8YFLogxK
U2 - 10.1021/jp210453v
DO - 10.1021/jp210453v
M3 - Article
AN - SCOPUS:84859736883
SN - 1932-7447
VL - 116
SP - 8034
EP - 8043
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 14
ER -