Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

Daipei Liu, Herwig Peters, Nicole Kessissoglou, Steffen Marburg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Based on acoustic radiation modes, the surface contribution method has been developed to predict the surface contributions to the radiated sound power from a vibrating structure. In this work, the surface contribution method is used to identify the sound field on a vibrating structure submerged in a heavy fluid. It was recently found that surface contribution method was not able to predict the surface contributions at low frequencies when the structural wavenumber is higher than the acoustic wavenumber. In this paper, the acoustic radiation efficiencies calculated for different numbers of integration points are compared and used to compute the surface contributions to the radiated sound power. The radiated sound power obtained from both the surface contribution and the active intensity methods are compared. Numerical results for a fully coupled finite element/boundary element model of a cylindrical shell with hemispherical end closures submerged in water show that the surface contribution method can also be successfully applied at low frequencies.

Original languageEnglish
Title of host publicationINTERNOISE 2014 - 43rd International Congress on Noise Control Engineering
Subtitle of host publicationImproving the World Through Noise Control
EditorsJohn Davy, Marion Burgess, Charles Don, Liz Dowsett, Terry McMinn, Norm Broner
PublisherAustralian Acoustical Society
ISBN (Electronic)9780909882037
StatePublished - 2014
Externally publishedYes
Event43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, INTERNOISE 2014 - Melbourne, Australia
Duration: 16 Nov 201419 Nov 2014

Publication series

NameINTERNOISE 2014 - 43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control

Conference

Conference43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, INTERNOISE 2014
Country/TerritoryAustralia
CityMelbourne
Period16/11/1419/11/14

Keywords

  • Acoustic radiation efficiencies
  • Active intensity
  • Supersonic acoustic intensity
  • Surface contribution method

Fingerprint

Dive into the research topics of 'Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method'. Together they form a unique fingerprint.

Cite this