TY - GEN
T1 - Prediction of premixed flame dynamics using LES with tabulated chemistry and Eulerian stochastic fields
AU - Avdonin, Alexander
AU - Javareshkian, Alireza
AU - Polifke, Wolfgang
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - This paper demonstrates that a Large Eddy Simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence of progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. A LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e. the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and flame transfer function are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with experimental data.
AB - This paper demonstrates that a Large Eddy Simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence of progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. A LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e. the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and flame transfer function are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with experimental data.
UR - http://www.scopus.com/inward/record.url?scp=85075793957&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90140
DO - 10.1115/GT2019-90140
M3 - Conference contribution
AN - SCOPUS:85075793957
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -