TY - JOUR
T1 - Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning
AU - Mahajan, Vishal
AU - Katrakazas, Christos
AU - Antoniou, Constantinos
N1 - Publisher Copyright:
© National Academy of Sciences: Transportation Research Board 2020.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Highway safety has attracted significant research interest in recent years, especially as innovative technologies such as connected and autonomous vehicles (CAVs) are fast becoming a reality. Identification and prediction of driving intention are fundamental for avoiding collisions as it can provide useful information to drivers and vehicles in their vicinity. However, the state-of-the-art in maneuver prediction requires the utilization of large labeled datasets, which demand a significant amount of processing and might hinder real-time applications. In this paper, an end-to-end machine learning model for predicting lane-change maneuvers from unlabeled data using a limited number of features is developed and presented. The model is built on a novel comprehensive dataset (i.e., highD) obtained from German highways with camera-equipped drones. Density-based clustering is used to identify lane-changing and lane-keeping maneuvers and a support vector machine (SVM) model is then trained to learn the boundaries of the clustered labels and automatically label the new raw data. The labeled data are then input to a long short-term memory (LSTM) model which is used to predict maneuver class. The classification results show that lane changes can efficiently be predicted in real-time, with an average detection time of at least 3 s with a small percentage of false alarms. The utilization of unlabeled data and vehicle characteristics as features increases the prospects of transferability of the approach and its practical application for highway safety.
AB - Highway safety has attracted significant research interest in recent years, especially as innovative technologies such as connected and autonomous vehicles (CAVs) are fast becoming a reality. Identification and prediction of driving intention are fundamental for avoiding collisions as it can provide useful information to drivers and vehicles in their vicinity. However, the state-of-the-art in maneuver prediction requires the utilization of large labeled datasets, which demand a significant amount of processing and might hinder real-time applications. In this paper, an end-to-end machine learning model for predicting lane-change maneuvers from unlabeled data using a limited number of features is developed and presented. The model is built on a novel comprehensive dataset (i.e., highD) obtained from German highways with camera-equipped drones. Density-based clustering is used to identify lane-changing and lane-keeping maneuvers and a support vector machine (SVM) model is then trained to learn the boundaries of the clustered labels and automatically label the new raw data. The labeled data are then input to a long short-term memory (LSTM) model which is used to predict maneuver class. The classification results show that lane changes can efficiently be predicted in real-time, with an average detection time of at least 3 s with a small percentage of false alarms. The utilization of unlabeled data and vehicle characteristics as features increases the prospects of transferability of the approach and its practical application for highway safety.
UR - http://www.scopus.com/inward/record.url?scp=85084341843&partnerID=8YFLogxK
U2 - 10.1177/0361198120922210
DO - 10.1177/0361198120922210
M3 - Article
AN - SCOPUS:85084341843
SN - 0361-1981
VL - 2674
SP - 336
EP - 347
JO - Transportation Research Record
JF - Transportation Research Record
IS - 7
ER -