TY - JOUR
T1 - Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning
T2 - The Necessity of Modified Algorithms and Specific Data
AU - Lazic, Igor
AU - Hinterwimmer, Florian
AU - Langer, Severin
AU - Pohlig, Florian
AU - Suren, Christian
AU - Seidl, Fritz
AU - Rückert, Daniel
AU - Burgkart, Rainer
AU - von Eisenhart-Rothe, Rüdiger
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Background: Machine Learning (ML) in arthroplasty is becoming more popular, as it is perfectly suited for prediction models. However, results have been heterogeneous so far. We hypothesize that an accurate ML model for outcome prediction in THA must be able to compute arthroplasty-specific data. In this study, we evaluate a ML approach applying data from two German arthroplasty-specific registries to predict adverse outcomes after THA, after careful evaluations of ML algorithms, outcome and input variables by an interdisciplinary team of data scientists and surgeons. Methods: Data of 1217 cases of primary THA from a single center were derived from two German arthroplasty-specific registries between 2016 to 2019. The XGBoost algorithm was adjusted and applied. Accuracy, sensitivity, specificity and AUC were calculated. Results: For the prediction of complications, the ML algorithm achieved an accuracy of 80.3%, a sensitivity of 31.0%, a specificity of 89.4% and an AUC of 64.1%. For the prediction of surgery duration, the ML algorithm yielded an accuracy of 81.7%, a sensitivity of 58.2%, a specificity of 91.6% and an AUC of 89.1%. The feature importance indicated non-linear outcomes for age, height, weight and surgeon. No relevant linear correlations were found. Conclusion: The attunement of input and output data as well as the modifications of the ML algorithm permitted the development of a feasible ML model for the prediction of complications and surgery duration.
AB - Background: Machine Learning (ML) in arthroplasty is becoming more popular, as it is perfectly suited for prediction models. However, results have been heterogeneous so far. We hypothesize that an accurate ML model for outcome prediction in THA must be able to compute arthroplasty-specific data. In this study, we evaluate a ML approach applying data from two German arthroplasty-specific registries to predict adverse outcomes after THA, after careful evaluations of ML algorithms, outcome and input variables by an interdisciplinary team of data scientists and surgeons. Methods: Data of 1217 cases of primary THA from a single center were derived from two German arthroplasty-specific registries between 2016 to 2019. The XGBoost algorithm was adjusted and applied. Accuracy, sensitivity, specificity and AUC were calculated. Results: For the prediction of complications, the ML algorithm achieved an accuracy of 80.3%, a sensitivity of 31.0%, a specificity of 89.4% and an AUC of 64.1%. For the prediction of surgery duration, the ML algorithm yielded an accuracy of 81.7%, a sensitivity of 58.2%, a specificity of 91.6% and an AUC of 89.1%. The feature importance indicated non-linear outcomes for age, height, weight and surgeon. No relevant linear correlations were found. Conclusion: The attunement of input and output data as well as the modifications of the ML algorithm permitted the development of a feasible ML model for the prediction of complications and surgery duration.
KW - artificial intelligence
KW - hip surgery
KW - machine learning
KW - supervised learning
KW - total hip arthroplasty
UR - http://www.scopus.com/inward/record.url?scp=85128126977&partnerID=8YFLogxK
U2 - 10.3390/jcm11082147
DO - 10.3390/jcm11082147
M3 - Article
AN - SCOPUS:85128126977
SN - 2077-0383
VL - 11
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 8
M1 - 2147
ER -