Predicting solvation free energies with an implicit solvent machine learning potential

Sebastien Röcken, Anton F. Burnet, Julija Zavadlav

Research output: Contribution to journalArticlepeer-review

Abstract

Machine learning (ML) potentials are a powerful tool in molecular modeling, enabling ab initio accuracy for comparably small computational costs. Nevertheless, all-atom simulations employing best-performing graph neural network architectures are still too expensive for applications requiring extensive sampling, such as free energy computations. Implicit solvent models could provide the necessary speed-up due to reduced degrees of freedom and faster dynamics. Here, we introduce a Solvation Free Energy Path Reweighting (ReSolv) framework to parameterize an implicit solvent ML potential for small organic molecules that accurately predicts the hydration free energy, an essential parameter in drug design and pollutant modeling. Learning on a combination of experimental hydration free energy data and ab initio data of molecules in vacuum, ReSolv bypasses the need for intractable ab initio data of molecules in an explicit bulk solvent and does not have to resort to less accurate data-generating models. On the FreeSolv dataset, ReSolv achieves a mean absolute error close to average experimental uncertainty, significantly outperforming standard explicit solvent force fields. Compared to the explicit solvent ML potential, ReSolv offers a computational speedup of four orders of magnitude and attains closer agreement with experiments. The presented framework paves the way for deep molecular models that are more accurate yet computationally more cost-effective than classical atomistic models.

Original languageEnglish
Article number234101
JournalJournal of Chemical Physics
Volume161
Issue number23
DOIs
StatePublished - 21 Dec 2024

Fingerprint

Dive into the research topics of 'Predicting solvation free energies with an implicit solvent machine learning potential'. Together they form a unique fingerprint.

Cite this