Abstract
We report on a comprehensive investigation of the effects of strain and film thickness on the structural and magnetic properties of epitaxial thin films of the prototypal Jeff=1/2 compound Sr2IrO4 by advanced x-ray scattering. We find that the Sr2IrO4 thin films can be grown fully strained up to a thickness of 108 nm. By using x-ray resonant scattering, we show that the out-of-plane magnetic correlation length is strongly dependent on the thin film thickness, but independent of the strain state of the thin films. This can be used as a finely tuned dial to adjust the out-of-plane magnetic correlation length and transform the magnetic anisotropy from two-dimensional to three-dimensional behavior by incrementing film thickness. These results provide a clearer picture for the systematic control of the magnetic degrees of freedom in epitaxial thin films of Sr2IrO4 and bring to light the potential for a rich playground to explore the physics of 5d transition-metal compounds.
Original language | English |
---|---|
Article number | 214402 |
Journal | Physical Review B |
Volume | 102 |
Issue number | 21 |
DOIs | |
State | Published - 2 Dec 2020 |