TY - JOUR
T1 - Pre-therapy PET-based voxel-wise dosimetry prediction by characterizing intra-organ heterogeneity in PSMA-directed radiopharmaceutical theranostics
AU - Xue, Song
AU - Gafita, Andrei
AU - Zhao, Yu
AU - Mercolli, Lorenzo
AU - Cheng, Fangxiao
AU - Rauscher, Isabel
AU - D’Alessandria, Calogero
AU - Seifert, Robert
AU - Afshar-Oromieh, Ali
AU - Rominger, Axel
AU - Eiber, Matthias
AU - Shi, Kuangyu
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/9
Y1 - 2024/9
N2 - Background and objective: Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. Methods: 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. Results: Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. Conclusion: Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.
AB - Background and objective: Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. Methods: 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. Results: Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. Conclusion: Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.
KW - Deep learning
KW - Dosimetry
KW - Intra-organ heterogeneity
KW - Radiopharmaceutical therapy
KW - [Lu]Lu-PSMA I&T
UR - http://www.scopus.com/inward/record.url?scp=85192513746&partnerID=8YFLogxK
U2 - 10.1007/s00259-024-06737-3
DO - 10.1007/s00259-024-06737-3
M3 - Article
AN - SCOPUS:85192513746
SN - 1619-7070
VL - 51
SP - 3450
EP - 3460
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 11
ER -