Practical methods for graph two-sample testing

Debarghya Ghoshdastidar, Ulrike Von Luxburg

Research output: Contribution to journalConference articlepeer-review

20 Scopus citations

Abstract

Hypothesis testing for graphs has been an important tool in applied research fields for more than two decades, and still remains a challenging problem as one often needs to draw inference from few replicates of large graphs. Recent studies in statistics and learning theory have provided some theoretical insights about such high-dimensional graph testing problems, but the practicality of the developed theoretical methods remains an open question. In this paper, we consider the problem of two-sample testing of large graphs. We demonstrate the practical merits and limitations of existing theoretical tests and their bootstrapped variants. We also propose two new tests based on asymptotic distributions. We show that these tests are computationally less expensive and, in some cases, more reliable than the existing methods.

Original languageEnglish
Pages (from-to)3015-3024
Number of pages10
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: 2 Dec 20188 Dec 2018

Fingerprint

Dive into the research topics of 'Practical methods for graph two-sample testing'. Together they form a unique fingerprint.

Cite this