Prädiktion menschlicher Fehler in der Linienmontage Konzeptionelles Datenmodell und Herausforderungen bei der Datenerhebung

Translated title of the contribution: Prediction of Human Errors in Line Assembly – Conceptual Data Model and Challenges in Data Collection.

Björn Klages, Etienne Fieg, Marc Wegmann, Michael F. Zäh

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Manufacturing companies face many challenges, such as demographic change, skills shortages, increased product variance, and pressure regarding costs, quality, and time. Among these challenges are those related to the prevention of human error. To enable data-based prediction of these errors, it is first necessary to examine the data collection process. This article shows that data protection is one major obstacle.

Translated title of the contributionPrediction of Human Errors in Line Assembly – Conceptual Data Model and Challenges in Data Collection.
Original languageGerman
Pages (from-to)70-74
Number of pages5
JournalZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
Volume119
Issue number1-2
DOIs
StatePublished - Feb 2024

Fingerprint

Dive into the research topics of 'Prediction of Human Errors in Line Assembly – Conceptual Data Model and Challenges in Data Collection.'. Together they form a unique fingerprint.

Cite this