PowerPruning: Selecting Weights and Activations for Power-Efficient Neural Network Acceleration

Richard Petri, Grace Li Zhang, Yiran Chen, Ulf Schlichtmann, Bing Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Deep neural networks (DNNs) have been successfully applied in various fields. A major challenge of deploying DNNs, especially on edge devices, is power consumption, due to the large number of multiply-and-accumulate (MAC) operations. To address this challenge, we propose PowerPruning, a novel method to reduce power consumption in digital neural network accelerators by selecting weights that lead to less power consumption in MAC operations. In addition, the timing characteristics of the selected weights together with all activation transitions are evaluated. The weights and activations that lead to small delays are further selected. Consequently, the maximum delay of the sensitized circuit paths in the MAC units is reduced even without modifying MAC units, which thus allows a flexible scaling of supply voltage to reduce power consumption further. Together with retraining, the proposed method can reduce power consumption of DNNs on hardware by up to 73.9% with only a slight accuracy loss.

Original languageEnglish
Title of host publication2023 60th ACM/IEEE Design Automation Conference, DAC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350323481
DOIs
StatePublished - 2023
Event60th ACM/IEEE Design Automation Conference, DAC 2023 - San Francisco, United States
Duration: 9 Jul 202313 Jul 2023

Publication series

NameProceedings - Design Automation Conference
Volume2023-July
ISSN (Print)0738-100X

Conference

Conference60th ACM/IEEE Design Automation Conference, DAC 2023
Country/TerritoryUnited States
CitySan Francisco
Period9/07/2313/07/23

Fingerprint

Dive into the research topics of 'PowerPruning: Selecting Weights and Activations for Power-Efficient Neural Network Acceleration'. Together they form a unique fingerprint.

Cite this