TY - JOUR
T1 - Power-Aware Virtual Network Function Placement and Routing Using an Abstraction Technique
AU - Varasteh, Amir
AU - De Andrade, Marilet
AU - Machuca, Carmen Mas
AU - Wosinska, Lena
AU - Kellerer, Wolfgang
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018
Y1 - 2018
N2 - The Network Function Virtualization (NFV) is very promising for efficient provisioning of network services and is attracting a lot of attention. NFV can be implemented in commercial off-the-shelf servers or Physical Machines (PMs), and many network services can be offered as a sequence of Virtual Network Functions (VNFs), known as VNF chains. Furthermore, many existing network devices (e.g., switches) and collocated PMs are underutilized or over-provisioned, resulting in low power-efficiency. In order to achieve more energy efficient systems, this work aims at designing the placement of VNFs such that the total power consumption in network nodes and PMs is minimized, while meeting the delay and capacity requirements of the foreseen demands. Based on existing switch and PM power models, we formulate an Integer Linear Programming (ILP) model to find the optimal solution. We also propose a heuristic based on the concept of Blocking Islands (BI), and a baseline heuristic based on the Betweenness Centrality (BC) property of the graph. Both heuristics and the ILP solutions have been compared in terms of total power consumption, delay, demands acceptance rate, and computation time. Our simulation results suggest that BI-based heuristic is superior compared with the BC-based heuristic, and very close to the optimal solution obtained from the ILP in terms of total power consumption and demands acceptance rate. Compared to the ILP, the proposed BI-based heuristic is significantly faster and results in 22% lower end-to-end delay, with a penalty of consuming 6% more power in average.
AB - The Network Function Virtualization (NFV) is very promising for efficient provisioning of network services and is attracting a lot of attention. NFV can be implemented in commercial off-the-shelf servers or Physical Machines (PMs), and many network services can be offered as a sequence of Virtual Network Functions (VNFs), known as VNF chains. Furthermore, many existing network devices (e.g., switches) and collocated PMs are underutilized or over-provisioned, resulting in low power-efficiency. In order to achieve more energy efficient systems, this work aims at designing the placement of VNFs such that the total power consumption in network nodes and PMs is minimized, while meeting the delay and capacity requirements of the foreseen demands. Based on existing switch and PM power models, we formulate an Integer Linear Programming (ILP) model to find the optimal solution. We also propose a heuristic based on the concept of Blocking Islands (BI), and a baseline heuristic based on the Betweenness Centrality (BC) property of the graph. Both heuristics and the ILP solutions have been compared in terms of total power consumption, delay, demands acceptance rate, and computation time. Our simulation results suggest that BI-based heuristic is superior compared with the BC-based heuristic, and very close to the optimal solution obtained from the ILP in terms of total power consumption and demands acceptance rate. Compared to the ILP, the proposed BI-based heuristic is significantly faster and results in 22% lower end-to-end delay, with a penalty of consuming 6% more power in average.
KW - Power optimization
KW - VNF Chain
KW - Virtual Network Functions
UR - http://www.scopus.com/inward/record.url?scp=85063435905&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2018.8647538
DO - 10.1109/GLOCOM.2018.8647538
M3 - Conference article
AN - SCOPUS:85063435905
SN - 2334-0983
JO - Proceedings - IEEE Global Communications Conference, GLOBECOM
JF - Proceedings - IEEE Global Communications Conference, GLOBECOM
M1 - 8647538
T2 - 2018 IEEE Global Communications Conference, GLOBECOM 2018
Y2 - 9 December 2018 through 13 December 2018
ER -