PourNet: Robust Robotic Pouring Through Curriculum and Curiosity-based Reinforcement Learning

Edwin Babaians, Tapan Sharma, Mojtaba Karimi, Sahand Sharifzadeh, Eckehard Steinbach

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Pouring liquids accurately into containers is one of the most challenging tasks for robots as they are unaware of the complex fluid dynamics and the behavior of liquids when pouring. Therefore, it is not possible to formulate a generic pouring policy for real-time applications. In this paper, we propose PourNet, as a generalized solution to pouring different liquids into containers. PourNet is a hybrid planner that uses deep reinforcement learning, for end-effector planning, and Nonlinear Model Predictive Control, for joint planning. In this work, we introduce a novel simulation environment using Unity3D and NVIDIA-Flex to train our agents. By effective choice of the state space, action space and the reward functions, we allow for a direct sim-to-real transfer of the learned skills without additional training. In the simulation, PourNet outperforms state-of-the-art by an average of 4.9g deviation for water-like, and 9.2g deviation for honey-like liquids. In the real-world scenario using Kinova Movo Platform, PourNet achieves an average pouring deviation of 2.3g for dish soap when using a novel pouring container. The average pouring deviation measured for water was 5.5g. All comprehensive experiments and the simulation environment is available at: http://cxdcxd.github.io/RRS/.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9332-9339
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: 23 Oct 202227 Oct 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period23/10/2227/10/22

Fingerprint

Dive into the research topics of 'PourNet: Robust Robotic Pouring Through Curriculum and Curiosity-based Reinforcement Learning'. Together they form a unique fingerprint.

Cite this