TY - GEN
T1 - Positive-Pair Redundancy Reduction Regularisation for Speech-Based Asthma Diagnosis Prediction
AU - Rizos, Georgios
AU - Calvo, Rafael A.
AU - Schuller, Bjorn W.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Asthma affects an estimated 334 million people worldwide, causing over 461 000 deaths. Exacerbations or asthma attacks can be predicted with new sensor technologies. We explore how recordings of human voice, and machine learning can provide better diagnostics for pulmonary diseases like asthma, as well as tools for helping patients better manage it. Past studies have focused on data collection processes that either mimic traditional auscultation, or make multi-sensor measurements, where the application of specialised recording hardware is required, possibly by expert personnel. This is costly and places limits on the size of the studies (e.g., number of study participants, and recording devices). In this paper, we consider another avenue, that of modelling self-recorded voice samples made using regular smartphones, along with self-reported clinical diagnosis annotations; specifically of asthma. We propose the usage of self-supervised learning that aims to reduce within-class representation redundancy among heterogeneous samples as an auxiliary task to promote robust, bias-free learning. The application of our method achieves an absolute increase of 1.80% in area under the Precision-Recall curve, compared to not using it, and a total of 3.54% compared to our baseline.
AB - Asthma affects an estimated 334 million people worldwide, causing over 461 000 deaths. Exacerbations or asthma attacks can be predicted with new sensor technologies. We explore how recordings of human voice, and machine learning can provide better diagnostics for pulmonary diseases like asthma, as well as tools for helping patients better manage it. Past studies have focused on data collection processes that either mimic traditional auscultation, or make multi-sensor measurements, where the application of specialised recording hardware is required, possibly by expert personnel. This is costly and places limits on the size of the studies (e.g., number of study participants, and recording devices). In this paper, we consider another avenue, that of modelling self-recorded voice samples made using regular smartphones, along with self-reported clinical diagnosis annotations; specifically of asthma. We propose the usage of self-supervised learning that aims to reduce within-class representation redundancy among heterogeneous samples as an auxiliary task to promote robust, bias-free learning. The application of our method achieves an absolute increase of 1.80% in area under the Precision-Recall curve, compared to not using it, and a total of 3.54% compared to our baseline.
KW - Asthma
KW - dataset-bias-reduction
KW - redundancy-reduction
KW - self-supervised-learning
KW - speech-modelling
UR - http://www.scopus.com/inward/record.url?scp=86000374264&partnerID=8YFLogxK
U2 - 10.1109/ICASSP49357.2023.10097087
DO - 10.1109/ICASSP49357.2023.10097087
M3 - Conference contribution
AN - SCOPUS:86000374264
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
BT - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Y2 - 4 June 2023 through 10 June 2023
ER -