Polymer brushes on graphene

Marin Steenackers, Alexander M. Gigler, Ning Zhang, Frank Deubel, Max Seifert, Lucas H. Hess, Candy Haley Yi Xuan Lim, Kian Ping Loh, Jose A. Garrido, Rainer Jordan, Martin Stutzmann, Ian D. Sharp

Research output: Contribution to journalArticlepeer-review

142 Scopus citations

Abstract

A critical bottleneck for the widespread use of single layer graphene is the absence of a facile method of chemical modification which does not diminish the outstanding properties of the two-dimensional sp2 network. Here, we report on the direct chemical modification of graphene by photopolymerization with styrene. We demonstrate that photopolymerization occurs at existing defect sites and that there is no detectable disruption of the basal plane conjugation of graphene. This method thus offers a route to define graphene functionality without degrading its electronic properties. Furthermore, we show that photopolymerization with styrene results in self-organized intercalative growth and delamination of few layer graphene. Under these reaction conditions, we find that a range of other vinyl monomers exhibits no reactivity with graphene. However, we demonstrate an alternative route by which the surface reactivity can be precisely tuned, and these monomers can be locally grafted via electron-beam-induced carbon deposition on the graphene surface.

Original languageEnglish
Pages (from-to)10490-10498
Number of pages9
JournalJournal of the American Chemical Society
Volume133
Issue number27
DOIs
StatePublished - 13 Jul 2011

Fingerprint

Dive into the research topics of 'Polymer brushes on graphene'. Together they form a unique fingerprint.

Cite this