TY - GEN
T1 - PointINet
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
AU - Lu, Fan
AU - Chen, Guang
AU - Qu, Sanqing
AU - Li, Zhijun
AU - Liu, Yinlong
AU - Knoll, Alois
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - LiDAR point cloud streams are usually sparse in time dimension, which is limited by hardware performance. Generally, the frame rates of mechanical LiDAR sensors are 10 to 20 Hz, which is much lower than other commonly used sensors like cameras. To overcome the temporal limitations of LiDAR sensors, a novel task named Point Cloud Frame Interpolation is studied in this paper. Given two consecutive point cloud frames, Point Cloud Frame Interpolation aims to generate intermediate frame(s) between them. To achieve that, we propose a novel framework, namely Point Cloud Frame Interpolation Network (PointINet). Based on the proposed method, the low frame rate point cloud streams can be upsampled to higher frame rates. We start by estimating bi-directional 3D scene flow between the two point clouds and then warp them to the given time step based on the 3D scene flow. To fuse the two warped frames and generate intermediate point cloud(s), we propose a novel learning-based points fusion module, which simultaneously takes two warped point clouds into consideration. We design both quantitative and qualitative experiments to evaluate the performance of the point cloud frame interpolation method and extensive experiments on two large scale outdoor LiDAR datasets demonstrate the effectiveness of the proposed PointINet. Our code is available at https://github.com/ispc-lab/PointINet.git.
AB - LiDAR point cloud streams are usually sparse in time dimension, which is limited by hardware performance. Generally, the frame rates of mechanical LiDAR sensors are 10 to 20 Hz, which is much lower than other commonly used sensors like cameras. To overcome the temporal limitations of LiDAR sensors, a novel task named Point Cloud Frame Interpolation is studied in this paper. Given two consecutive point cloud frames, Point Cloud Frame Interpolation aims to generate intermediate frame(s) between them. To achieve that, we propose a novel framework, namely Point Cloud Frame Interpolation Network (PointINet). Based on the proposed method, the low frame rate point cloud streams can be upsampled to higher frame rates. We start by estimating bi-directional 3D scene flow between the two point clouds and then warp them to the given time step based on the 3D scene flow. To fuse the two warped frames and generate intermediate point cloud(s), we propose a novel learning-based points fusion module, which simultaneously takes two warped point clouds into consideration. We design both quantitative and qualitative experiments to evaluate the performance of the point cloud frame interpolation method and extensive experiments on two large scale outdoor LiDAR datasets demonstrate the effectiveness of the proposed PointINet. Our code is available at https://github.com/ispc-lab/PointINet.git.
UR - http://www.scopus.com/inward/record.url?scp=85121201969&partnerID=8YFLogxK
U2 - 10.1609/aaai.v35i3.16324
DO - 10.1609/aaai.v35i3.16324
M3 - Conference contribution
AN - SCOPUS:85121201969
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 2251
EP - 2259
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
Y2 - 2 February 2021 through 9 February 2021
ER -