Pixel-Level Explanation of Multiple Instance Learning Models in Biomedical Single Cell Images

Ario Sadafi, Oleksandra Adonkina, Ashkan Khakzar, Peter Lienemann, Rudolf Matthias Hehr, Daniel Rueckert, Nassir Navab, Carsten Marr

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Explainability is a key requirement for computer-aided diagnosis systems in clinical decision-making. Multiple instance learning with attention pooling provides instance-level explainability, however for many clinical applications a deeper, pixel-level explanation is desirable, but missing so far. In this work, we investigate the use of four attribution methods to explain a multiple instance learning models: GradCAM, Layer-Wise Relevance Propagation (LRP), Information Bottleneck Attribution (IBA), and InputIBA. With this collection of methods, we can derive pixel-level explanations on for the task of diagnosing blood cancer from patients’ blood smears. We study two datasets of acute myeloid leukemia with over 100 000 single cell images and observe how each attribution method performs on the multiple instance learning architecture focusing on different properties of the white blood single cells. Additionally, we compare attribution maps with the annotations of a medical expert to see how the model’s decision-making differs from the human standard. Our study addresses the challenge of implementing pixel-level explainability in multiple instance learning models and provides insights for clinicians to better understand and trust decisions from computer-aided diagnosis systems.

Original languageEnglish
Title of host publicationInformation Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings
EditorsAlejandro Frangi, Marleen de Bruijne, Demian Wassermann, Nassir Navab
PublisherSpringer Science and Business Media Deutschland GmbH
Pages170-182
Number of pages13
ISBN (Print)9783031340475
DOIs
StatePublished - 2023
Event28th International Conference on Information Processing in Medical Imaging, IPMI 2023 - San Carlos de Bariloche, Argentina
Duration: 18 Jun 202323 Jun 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13939 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference28th International Conference on Information Processing in Medical Imaging, IPMI 2023
Country/TerritoryArgentina
CitySan Carlos de Bariloche
Period18/06/2323/06/23

Keywords

  • Blood cancer cytology
  • Multiple instance learning
  • Pixel-level explainability

Fingerprint

Dive into the research topics of 'Pixel-Level Explanation of Multiple Instance Learning Models in Biomedical Single Cell Images'. Together they form a unique fingerprint.

Cite this