TY - JOUR
T1 - Physiologic heart rate dependency of the PQ interval and its sex differences
AU - Toman, Ondřej
AU - Hnatkova, Katerina
AU - Smetana, Peter
AU - Huster, Katharina M.
AU - Šišáková, Martina
AU - Barthel, Petra
AU - Novotný, Tomáš
AU - Schmidt, Georg
AU - Malik, Marek
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - On standard electrocardiogram (ECG) PQ interval is known to be moderately heart rate dependent, but no physiologic details of this dependency have been established. At the same time, PQ dynamics is a clear candidate for non-invasive assessment of atrial abnormalities including the risk of atrial fibrillation. We studied PQ heart rate dependency in 599 healthy subjects (aged 33.5 ± 9.3 years, 288 females) in whom drug-free day-time 12-lead ECG Holters were available. Of these, 752,517 ECG samples were selected (1256 ± 244 per subject) to measure PQ and QT intervals and P wave durations. For each measured ECG sample, 5-minute history of preceding cardiac cycles was also obtained. Although less rate dependent than the QT intervals (36 ± 19% of linear slopes), PQ intervals were found to be dependent on underlying cycle length in a highly curvilinear fashion with the dependency significantly more curved in females compared to males. The PQ interval also responded to the heart rate changes with a delay which was highly sex dependent (95% adaptation in females and males after 114.9 ± 81.1 vs 65.4 ± 64.3 seconds, respectively, p < 0.00001). P wave duration was even less rate dependent than the PQ interval (9 ± 10% of linear QT/RR slopes). Rate corrected P wave duration was marginally but significantly shorter in females than in males (106.8 ± 8.4 vs 110.2 ± 7.9 ms, p < 0.00001). In addition to establishing physiologic standards, the study suggests that the curvatures and adaptation delay of the PQ/cycle-length dependency should be included in future non-invasive studies of atrial depolarizations.
AB - On standard electrocardiogram (ECG) PQ interval is known to be moderately heart rate dependent, but no physiologic details of this dependency have been established. At the same time, PQ dynamics is a clear candidate for non-invasive assessment of atrial abnormalities including the risk of atrial fibrillation. We studied PQ heart rate dependency in 599 healthy subjects (aged 33.5 ± 9.3 years, 288 females) in whom drug-free day-time 12-lead ECG Holters were available. Of these, 752,517 ECG samples were selected (1256 ± 244 per subject) to measure PQ and QT intervals and P wave durations. For each measured ECG sample, 5-minute history of preceding cardiac cycles was also obtained. Although less rate dependent than the QT intervals (36 ± 19% of linear slopes), PQ intervals were found to be dependent on underlying cycle length in a highly curvilinear fashion with the dependency significantly more curved in females compared to males. The PQ interval also responded to the heart rate changes with a delay which was highly sex dependent (95% adaptation in females and males after 114.9 ± 81.1 vs 65.4 ± 64.3 seconds, respectively, p < 0.00001). P wave duration was even less rate dependent than the PQ interval (9 ± 10% of linear QT/RR slopes). Rate corrected P wave duration was marginally but significantly shorter in females than in males (106.8 ± 8.4 vs 110.2 ± 7.9 ms, p < 0.00001). In addition to establishing physiologic standards, the study suggests that the curvatures and adaptation delay of the PQ/cycle-length dependency should be included in future non-invasive studies of atrial depolarizations.
UR - http://www.scopus.com/inward/record.url?scp=85079334687&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-59480-8
DO - 10.1038/s41598-020-59480-8
M3 - Article
C2 - 32054960
AN - SCOPUS:85079334687
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 2551
ER -