TY - GEN
T1 - Physics-based modeling of an anthropomimetic robot
AU - Wittmeier, Steffen
AU - Jäntsch, Michael
AU - Dalamagkidis, Konstantinos
AU - Knoll, Alois
PY - 2011
Y1 - 2011
N2 - The control of tendon-driven robots using techniques from traditional robotics remains a very challenging task that has been so far only successfully achieved for small-scale setups comprising exclusively revolute joints [1, 2]. Hence, we propose a fundamentally different approach. Instead of deriving an analytical robot model using either the Newton-Euler or Lagrangian formulation we suggest to employ physics-based simulation engines to simulate the peculiar dynamics of this emerging class of robots and to use the simulated robot model as an internal model for robot control [3]. In this paper, we present the reverse-engineered derivation of a detailed physics-based model of an anthropomimetic robot implemented on CALIPER [4], a simulation framework developed within the EU-funded project ECCEROBOT [5]. The model comprises an accurate model of the skeleton derived from laser scan data, as well as of artificial ligaments and muscles. The individual sub-models are validated separately against measurements and the successful integration of all sub-models is demonstrated by executing a limb movement which requires the parallel control of multiple muscles.
AB - The control of tendon-driven robots using techniques from traditional robotics remains a very challenging task that has been so far only successfully achieved for small-scale setups comprising exclusively revolute joints [1, 2]. Hence, we propose a fundamentally different approach. Instead of deriving an analytical robot model using either the Newton-Euler or Lagrangian formulation we suggest to employ physics-based simulation engines to simulate the peculiar dynamics of this emerging class of robots and to use the simulated robot model as an internal model for robot control [3]. In this paper, we present the reverse-engineered derivation of a detailed physics-based model of an anthropomimetic robot implemented on CALIPER [4], a simulation framework developed within the EU-funded project ECCEROBOT [5]. The model comprises an accurate model of the skeleton derived from laser scan data, as well as of artificial ligaments and muscles. The individual sub-models are validated separately against measurements and the successful integration of all sub-models is demonstrated by executing a limb movement which requires the parallel control of multiple muscles.
UR - http://www.scopus.com/inward/record.url?scp=84455201845&partnerID=8YFLogxK
U2 - 10.1109/IROS.2011.6048115
DO - 10.1109/IROS.2011.6048115
M3 - Conference contribution
AN - SCOPUS:84455201845
SN - 9781612844541
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 4148
EP - 4153
BT - IROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
T2 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
Y2 - 25 September 2011 through 30 September 2011
ER -