Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces

Sarah Wieghold, Juan Li, Patrick Simon, Maximilian Krause, Yuri Avlasevich, Chen Li, Jose A. Garrido, Ueli Heiz, Paolo Samorì, Klaus Müllen, Friedrich Esch, Johannes V. Barth, Carlos Andres Palma

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm-2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

Original languageEnglish
Article number10700
JournalNature Communications
Volume7
DOIs
StatePublished - 25 Feb 2016

Fingerprint

Dive into the research topics of 'Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces'. Together they form a unique fingerprint.

Cite this