TY - JOUR
T1 - Phosphatidylinositol 3-kinase facilitates bile acid-induced Ca2+ responses in pancreatic acinar cells
AU - Fischer, L.
AU - Gukovskaya, A. S.
AU - Penninger, J. M.
AU - Mareninova, O. A.
AU - Friess, H.
AU - Gukovsky, I.
AU - Pandol, S. J.
PY - 2007/3
Y1 - 2007/3
N2 - Bile acids are known to induce Ca2+ signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca2+ concentration ([Ca 2+]i) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca2+]i responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca2+]i responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K γ-isoform also decreased [Ca2+]i responses to bile acids. Depletion of CCK-sensitive intracellular Ca2+ pools or application of caffeine inhibited bile acid-induced [Ca2+]i signals, indicating that bile acids release Ca2+ from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca2+ in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca2+ reloading into the ER. Bile acids inhibited Ca2+ reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP3), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP3, facilitate bile acid-induced [Ca2+]i responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca2+ reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca2+]i increases and trypsinogen activation mediate key pathological processes in this disorder.
AB - Bile acids are known to induce Ca2+ signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca2+ concentration ([Ca 2+]i) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca2+]i responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca2+]i responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K γ-isoform also decreased [Ca2+]i responses to bile acids. Depletion of CCK-sensitive intracellular Ca2+ pools or application of caffeine inhibited bile acid-induced [Ca2+]i signals, indicating that bile acids release Ca2+ from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca2+ in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca2+ reloading into the ER. Bile acids inhibited Ca2+ reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP3), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP3, facilitate bile acid-induced [Ca2+]i responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca2+ reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca2+]i increases and trypsinogen activation mediate key pathological processes in this disorder.
KW - Cholecystokinin
KW - Pancreatitis
KW - Sarco(endo)plasmic reticulum Ca-ATPase
KW - Taurochenodeoxycholate
KW - Taurolithocholic acid 3-sulfate
UR - http://www.scopus.com/inward/record.url?scp=33947316895&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00558.2005
DO - 10.1152/ajpgi.00558.2005
M3 - Article
C2 - 17158252
AN - SCOPUS:33947316895
SN - 0193-1857
VL - 292
SP - G875-G886
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 3
ER -