Abstract
We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally realized by Aidelsburger et al. [Nat. Phys. 11, 162 (2015)1745-247310.1038/nphys3171] at half-filling of the lowest band. We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region of the phase diagram that is separated from a superfluid state by a first-order transition when tuning the band topology following the protocol used in the experiment. Since crossing a first-order transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize a featureless insulating state. The transition between this phase and the topological state proves to be continuous, providing a path in parameter space along which an FCI state could be adiabatically prepared. To further corroborate this statement, we perform time-dependent DMRG calculations which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple product state.
Original language | English |
---|---|
Article number | 165107 |
Journal | Physical Review B |
Volume | 96 |
Issue number | 16 |
DOIs | |
State | Published - 5 Oct 2017 |