Persistent Anytime Learning of Objects from Unseen Classes

Maximilian Denninger, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

We present a fast and very effective method for object classification that is particularly suited for robotic applications such as grasping and semantic mapping. Our approach is based on a Random Forest classifier that can be trained incrementally. This has the major benefit that semantic information from new data samples can be incorporated without retraining the entire model. Even if new samples from a previously unseen class are presented, our method is able to perform efficient updates and learn a sustainable representation for this new class. Further features of our method include a very fast and memory-efficient implementation, as well as the ability to interrupt the learning process at any time without a significant performance degradation. Experiments on benchmark data for robotic applications show the clear benefits of our incremental approach and its competitiveness with standard offline methods in terms of classification accuracy.

Original languageEnglish
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4075-4082
Number of pages8
ISBN (Electronic)9781538680940
DOIs
StatePublished - 27 Dec 2018
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: 1 Oct 20185 Oct 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period1/10/185/10/18

Keywords

  • Learning and Adaptive Systems
  • Object Detection
  • Online Learning
  • Segmentation and Categorization

Fingerprint

Dive into the research topics of 'Persistent Anytime Learning of Objects from Unseen Classes'. Together they form a unique fingerprint.

Cite this