Performance analysis of unimodal and multimodal models in valence-based empathy recognition

Adria Mallol-Ragolta, Maximilian Schmitt, Alice Baird, Nicholas Cummins, Björn Schuller

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The human ability to empathise is a core aspect of successful interpersonal relationships. In this regard, humanrobot interaction can be improved through the automatic perception of empathy, among other human attributes, allowing robots to affectively adapt their actions to interactants' feelings in any given situation. This paper presents our contribution to the generalised track of the One-Minute Gradual (OMG) Empathy Prediction Challenge by describing our approach to predict a listener's valence during semi-scripted actor-listener interactions. We extract visual and acoustic features from the interactions and feed them into a bidirectional long short-term memory network to capture the time-dependencies of the valence-based empathy during the interactions. Generalised and personalised unimodal and multimodal valence-based empathy models are then trained to assess the impact of each modality on the system performance. Furthermore, we analyse if intra-subject dependencies on empathy perception affect the system performance. We assess the models by computing the concordance correlation coefficient (CCC) between the predicted and self-annotated valence scores. The results support the suitability of employing multimodal data to recognise participants' valence-based empathy during the interactions, and highlight the subject-dependency of empathy. In particular, we obtained our best result with a personalised multimodal model, which achieved a CCC of 0.11 on the test set.

Original languageEnglish
Title of host publicationProceedings - 14th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728100890
DOIs
StatePublished - May 2019
Externally publishedYes
Event14th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2019 - Lille, France
Duration: 14 May 201918 May 2019

Publication series

NameProceedings - 14th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2019

Conference

Conference14th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2019
Country/TerritoryFrance
CityLille
Period14/05/1918/05/19

Fingerprint

Dive into the research topics of 'Performance analysis of unimodal and multimodal models in valence-based empathy recognition'. Together they form a unique fingerprint.

Cite this