TY - GEN
T1 - Performance analysis of joint radar and communication using OFDM and OTFS
AU - Gaudio, Lorenzo
AU - Kobayashi, Mari
AU - Bissinger, Bjorn
AU - Caire, Giuseppe
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - We consider a joint radar estimation and communication system using orthogonal frequency division multiplexing (OFDM) and orthogonal time frequency space (OTFS) modulations. The scenario is motivated by vehicular applications where a vehicle equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. By focusing on the case of a single target, we derive the maximum likelihood (ML) estimator and the Cramer-Rao lower bound on joint velocity and range estimation. Numerical examples demonstrate that both digital modulation formats can achieve as accurate range/velocity estimation as state-of-the-art radar waveforms such as frequency modulated continuous wave (FMCW) while sending digital information at their full achievable rate. We conclude that it is possible to obtain significant data transmission rate without compromising the radar estimation capabilities of the system.
AB - We consider a joint radar estimation and communication system using orthogonal frequency division multiplexing (OFDM) and orthogonal time frequency space (OTFS) modulations. The scenario is motivated by vehicular applications where a vehicle equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. By focusing on the case of a single target, we derive the maximum likelihood (ML) estimator and the Cramer-Rao lower bound on joint velocity and range estimation. Numerical examples demonstrate that both digital modulation formats can achieve as accurate range/velocity estimation as state-of-the-art radar waveforms such as frequency modulated continuous wave (FMCW) while sending digital information at their full achievable rate. We conclude that it is possible to obtain significant data transmission rate without compromising the radar estimation capabilities of the system.
UR - http://www.scopus.com/inward/record.url?scp=85070314455&partnerID=8YFLogxK
U2 - 10.1109/ICCW.2019.8757044
DO - 10.1109/ICCW.2019.8757044
M3 - Conference contribution
AN - SCOPUS:85070314455
T3 - 2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings
BT - 2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019
Y2 - 20 May 2019 through 24 May 2019
ER -