TY - JOUR
T1 - PEMBE-growth of gallium nitride on (0001) sapphire
T2 - A comparison to MOCVD grown GaN
AU - Angerer, H.
AU - Ambacher, O.
AU - Dìmìtrov, R.
AU - Metzger, Th
AU - Rieger, W.
AU - Stutzmann, M.
PY - 1996
Y1 - 1996
N2 - Thin films of GaN on c-plane sapphire were grown by plasma-enhanced molecular beam epitaxy (PEMBE). The influence of different growth conditions on the quality of the epitaxial layers was studied by x-ray diffraction (XRD), atomic force microscopy (AFM) and Hall measurements. For low deposition temperatures, the growth of a thin buffer layer of AIN results in a decrease of the XRD rocking curve full width at half maximum (FWHM) but also in poorer quality in electronic and optical properties. Samples of 3μm thickness with 570 arcsec FWHM in the XRD rocking curve, a near band gap PL-emission FWHM at 5 K of 7 meV, charge carrier densities of ne = 2 × 10 17 cm-3, and Hall mobilities of 270 cm2/Vs at 300 K were grown without a buffer layer. A comparison of the morphology and XRD rocking curves with those of GaN films deposited by metalorganic chemical vapour deposition (MOCVD) shows that the two methods have different growth mechanisms.
AB - Thin films of GaN on c-plane sapphire were grown by plasma-enhanced molecular beam epitaxy (PEMBE). The influence of different growth conditions on the quality of the epitaxial layers was studied by x-ray diffraction (XRD), atomic force microscopy (AFM) and Hall measurements. For low deposition temperatures, the growth of a thin buffer layer of AIN results in a decrease of the XRD rocking curve full width at half maximum (FWHM) but also in poorer quality in electronic and optical properties. Samples of 3μm thickness with 570 arcsec FWHM in the XRD rocking curve, a near band gap PL-emission FWHM at 5 K of 7 meV, charge carrier densities of ne = 2 × 10 17 cm-3, and Hall mobilities of 270 cm2/Vs at 300 K were grown without a buffer layer. A comparison of the morphology and XRD rocking curves with those of GaN films deposited by metalorganic chemical vapour deposition (MOCVD) shows that the two methods have different growth mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=4043084892&partnerID=8YFLogxK
U2 - 10.1557/s1092578300001873
DO - 10.1557/s1092578300001873
M3 - Article
AN - SCOPUS:4043084892
SN - 1092-5783
VL - 1
SP - 5d
JO - MRS Internet Journal of Nitride Semiconductor Research
JF - MRS Internet Journal of Nitride Semiconductor Research
ER -