TY - GEN
T1 - PCDepth
T2 - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
AU - Liu, Haotian
AU - Qu, Sanqing
AU - Lu, Fan
AU - Bu, Zongtao
AU - Rohrbein, Florian
AU - Knoll, Alois
AU - Chen, Guang
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Event cameras can record scene dynamics with high temporal resolution, providing rich scene details for monocular depth estimation (MDE) even at low-level illumination. Therefore, existing complementary learning approaches for MDE fuse intensity information from images and scene details from event data for better scene understanding. However, most methods directly fuse two modalities at pixel level, ignoring that the attractive complementarity mainly impacts high-level patterns that only occupy a few pixels. For example, event data is likely to complement contours of scene objects. In this paper, we discretize the scene into a set of high-level patterns to explore the complementarity and propose a Pattern-based Complementary learning architecture for monocular Depth estimation (PCDepth). Concretely, PCDepth comprises two primary components: a complementary visual representation learning module for discretizing the scene into high-level patterns and integrating complementary patterns across modalities and a refined depth estimator aimed at scene reconstruction and depth prediction while maintaining an efficiency-accuracy balance. Through pattern-based complementary learning, PCDepth fully exploits two modalities and achieves more accurate predictions than existing methods, especially in challenging nighttime scenarios. Extensive experiments on MVSEC and DSEC datasets verify the effectiveness and superiority of our PCDepth. Remarkably, compared with state-of-the-art, PCDepth achieves a 37.9% improvement in accuracy in MVSEC nighttime scenarios.
AB - Event cameras can record scene dynamics with high temporal resolution, providing rich scene details for monocular depth estimation (MDE) even at low-level illumination. Therefore, existing complementary learning approaches for MDE fuse intensity information from images and scene details from event data for better scene understanding. However, most methods directly fuse two modalities at pixel level, ignoring that the attractive complementarity mainly impacts high-level patterns that only occupy a few pixels. For example, event data is likely to complement contours of scene objects. In this paper, we discretize the scene into a set of high-level patterns to explore the complementarity and propose a Pattern-based Complementary learning architecture for monocular Depth estimation (PCDepth). Concretely, PCDepth comprises two primary components: a complementary visual representation learning module for discretizing the scene into high-level patterns and integrating complementary patterns across modalities and a refined depth estimator aimed at scene reconstruction and depth prediction while maintaining an efficiency-accuracy balance. Through pattern-based complementary learning, PCDepth fully exploits two modalities and achieves more accurate predictions than existing methods, especially in challenging nighttime scenarios. Extensive experiments on MVSEC and DSEC datasets verify the effectiveness and superiority of our PCDepth. Remarkably, compared with state-of-the-art, PCDepth achieves a 37.9% improvement in accuracy in MVSEC nighttime scenarios.
UR - http://www.scopus.com/inward/record.url?scp=85216442504&partnerID=8YFLogxK
U2 - 10.1109/IROS58592.2024.10802220
DO - 10.1109/IROS58592.2024.10802220
M3 - Conference contribution
AN - SCOPUS:85216442504
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 11187
EP - 11194
BT - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 14 October 2024 through 18 October 2024
ER -